🎯

macos-resource-optimizer

🎯Skill

from rdmptv/adbautoplayer

VibeIndex|
What it does

Optimizes macOS system resources by concurrently executing 40 specialized agents across memory, disk, CPU, and process management domains.

macos-resource-optimizer

Installation

Install skill:
npx skills add https://github.com/rdmptv/adbautoplayer --skill macos-resource-optimizer
2
AddedJan 27, 2026

Skill Details

SKILL.md

macOS system resource optimization with 40 specialized agents for memory, disk, CPU, and process management

Overview

# macOS Resource Optimizer

Production-ready system optimization with 40+ specialized agents for comprehensive macOS resource management.

Quick Reference

What is macOS Resource Optimizer?

Real-world macOS optimization framework with 40+ specialized agents executing in parallel:

  • coordinator.py: 40-agent orchestrator (6 phases, 4-5s execution)
  • 40+ specialized agents: Memory, disk, browser, Docker, developer tools
  • Implementation: UV scripts (PEP 723) + Bash delegation via MoAI agents

Main Orchestrator:

| Script | Purpose | Agents | Execution Time |

|--------|---------|--------|----------------|

| coordinator.py | 40-agent parallel orchestrator | 40 agents (6 phases) | 4-5s |

6 Phases (coordinator.py):

  1. Disk Cleanup (15 agents): Python/Node zombies, Browser helpers, Network leaks, Docker containers
  2. RAM Optimization (9 agents): Memory pressure, App profiler, Browser tabs, Electron apps
  3. Developer Cache (5 agents): Time Machine, Xcode, Build caches, Docker cleanup
  4. Advanced Memory (4 agents): Swap optimizer, WindowServer, Spotlight, Memory leaks
  5. Browser Deep Cleanup (3 agents): Chrome, Safari, Firefox optimizers
  6. App & System (3 agents): Messaging apps, VSCode, DNS/Network

Performance:

  • Sequential: 40 Γ— 1.0s = 40s (estimated per agent)
  • Parallel (6 phases): 4-5s total (8Γ— faster than sequential)
  • Real-world: 4-7s depending on system state and cache availability
  • With MetricsCache (TTL 30s): ~2-3s on repeated calls

Usage

1. Full System Optimization (40 agents)

```bash

# Execute all 40 agents in 6 parallel phases

uv run scripts/coordinator.py

# JSON output

uv run scripts/coordinator.py --json

```

2. Individual Agents

```bash

# Memory pressure detector

uv run scripts/agent_memory_pressure_detector.py

# Browser tab manager

uv run scripts/agent_browser_tab_manager.py

# Docker cleanup

uv run scripts/agent_docker_deep_cleanup.py --dry-run

```

3. Utility Scripts

```bash

# Kill zombie processes

uv run scripts/kill_zombies_parallel.py

# Report memory usage

uv run scripts/report_memory.py

# Analyze running processes

uv run scripts/analyze_processes.py --json

```

MoAI Integration

Manager Agents

manager-resource-coordinator.md:

```python

# Execute full 40-agent orchestration

result = Bash("uv run .claude/skills/macos-resource-optimizer/scripts/coordinator.py --json")

data = json.loads(result.stdout)

# Parse results by phase

phase1_results = data["phases"]["disk_cleanup"]

phase2_results = data["phases"]["ram_optimization"]

# Return aggregated recommendations

```

Expert Agents

expert-memory-optimizer.md:

```python

# Execute memory-specific agents

result = Bash("uv run scripts/agent_memory_pressure_detector.py --json")

memory_data = json.loads(result.stdout)

# Generate recommendations based on memory analysis

```

Available Agents (40+)

Phase 1: Disk Cleanup (15 agents)

Process Cleanup:

  • agent_python_zombies.py - Python zombie processes
  • agent_node_process_scanner.py - Node/Bun zombie processes
  • agent_workerd_zombies.py - Cloudflare Workers zombies
  • agent_generic_idle.py - Generic idle process hunter
  • agent_jvm_memory_hog_detector.py - JVM memory hog detection
  • agent_ssh_git_process_zombies.py - SSH/Git process zombies

Application Helpers:

  • agent_browser_helpers.py - Chrome/Arc renderer helpers
  • agent_language_servers.py - VS Code language servers
  • agent_electron_helpers.py - Notion/Dia helpers

Network & Resources:

  • agent_network_connection_leaks.py - Network connection leaks
  • agent_orphaned_process_groups.py - Orphaned process groups
  • agent_docker_container_scanner.py - Docker container scanning
  • agent_database_connection_pooler.py - Database connection pooling
  • agent_ssh_connection_scanner.py - SSH connection scanning
  • agent_file_cache_optimizer.py - File cache optimization

Phase 2: RAM Optimization (9 agents)

  • agent_memory_pressure_detector.py - Memory pressure analysis
  • agent_browser_tab_manager.py - Browser tab management
  • agent_browser_helper_consolidator.py - Browser helper consolidation
  • agent_browser_cache_optimizer.py - Browser cache optimization
  • agent_inactive_app_detector.py - Inactive application detection
  • agent_electron_app_optimizer.py - Electron app optimization
  • agent_background_app_suspender.py - Background app suspension
  • agent_swap_optimizer.py - Swap usage optimization
  • agent_memory_leak_hunter.py - Memory leak detection

Phase 3: Developer Cache (5 agents)

  • agent_timemachine_snapshot_cleaner.py - Time Machine snapshots
  • agent_developer_cache_cleaner.py - Developer cache cleanup
  • agent_xcode_cache_cleaner.py - Xcode artifact cleanup
  • agent_build_cache_cleaner.py - Gradle/Maven cache cleanup
  • agent_system_log_cleaner.py - System log cleanup

Phase 4: Advanced Memory (4 agents)

  • agent_swap_purgeable_hunter.py - Purgeable swap memory
  • agent_window_server_optimizer.py - WindowServer optimization
  • agent_spotlight_mds_hunter.py - Spotlight MDS optimization
  • agent_memory_leak_hunter.py - Memory leak detection

Phase 5: Browser Deep Cleanup (3 agents)

  • agent_chrome_deep_cleanup.py - Chrome deep cleanup
  • agent_safari_optimizer.py - Safari optimization
  • agent_firefox_deep_cleanup.py - Firefox cleanup

Phase 6: App & System (3 agents)

  • agent_messaging_app_hunter.py - Messaging app optimization (Slack/Discord)
  • agent_vscode_deep_cleanup.py - VS Code cleanup
  • agent_dns_connection_scanner.py - DNS/Network optimization

Architecture

Execution Stack

```

User Command (slash command)

↓

MoAI Command (Python orchestrator)

↓

Task() delegation to manager agents

↓

Manager-Resource-Coordinator (MoAI agent)

↓

Bash(uv run coordinator.py) β†’ UV Script execution

↓

asyncio.gather() parallel execution

β”œβ”€ Phase 1: Disk Cleanup (15 agents)

β”œβ”€ Phase 2: RAM Optimization (9 agents)

β”œβ”€ Phase 3: Developer Cache (5 agents)

β”œβ”€ Phase 4: Advanced Memory (4 agents)

β”œβ”€ Phase 5: Browser Cleanup (3 agents)

└─ Phase 6: App & System (3 agents)

↓

JSON results aggregation

↓

User-facing report (Korean)

```

Implementation Details

Execution Method: UV Scripts (PEP 723)

```bash

#!/usr/bin/env uv run

# /// script

# requires-python = ">=3.11"

# dependencies = ["psutil", "pyyaml"]

# ///

import asyncio

import psutil

# Scripts run directly via: uv run script.py

# No Python virtual environment setup required

```

Delegation Pattern: Bash + Task()

```python

# Manager agent receives command

# Delegates to Bash tool: uv run .claude/skills/.../scripts/coordinator.py

# Coordinator spawns async tasks for 40 agents

# Results aggregated and returned

```

Data Flow

```python

# coordinator.py executes agents

{

"phases": {

"disk_cleanup": {

"agents_executed": 15,

"duration": 2.1,

"savings_gb": 5.3,

"results": [...]

},

"ram_optimization": {

"agents_executed": 9,

"duration": 1.8,

"memory_freed_gb": 2.1,

"results": [...]

},

...

},

"summary": {

"total_agents": 40,

"total_duration": 2.5,

"total_savings_gb": 12.4,

"total_memory_freed_gb": 4.2

}

}

```

Protected Apps

Default protected apps (from config/cleanup-rules.json):

  • Claude Code
  • Notion
  • Slack
  • Discord
  • Mail
  • Messages
  • Ghostty

Recommended additional protection (for development environments):

  • Node.js (active development processes)
  • Apple Virtualization (system virtualization)
  • VSCode/Cursor (development editors)
  • Xcode (development tools)
  • Docker Desktop (containerization)

Customization: Edit config/cleanup-rules.json to add/remove protected apps based on your workflow.

These apps are NEVER killed or suspended during optimization.

Performance Characteristics

| Metric | Value |

|--------|-------|

| Total Agents | 40+ specialized agents |

| Orchestrators | 1 (coordinator only) |

| Execution Time (parallel) | 4-5s (first run), 2-3s (cached) |

| Execution Time (sequential) | ~40s (estimated) |

| Speed Improvement | 8Γ— faster (parallel vs sequential) |

| Memory Saved (typical) | 1-3 GB |

| Disk Saved (typical) | 0.4-2.5 GB |

| Actual Results (2025-11-30) | +413MB disk, 18% of goal |

Commands Integration

/macos-resource-optimizer:1-analyze

```markdown

Execute full system analysis via coordinator.py.

Workflow

  1. Delegate to manager-resource-coordinator
  2. Coordinator executes: uv run scripts/coordinator.py --json
  3. Parse JSON results
  4. Return formatted analysis with recommendations

```

/macos-resource-optimizer:2-optimize

```markdown

Execute system optimization via coordinator.py.

Workflow

  1. Delegate to manager-resource-coordinator
  2. Coordinator executes: uv run scripts/coordinator.py --json
  3. Parse and validate results
  4. Apply optimizations if approved
  5. Return optimization results

```

Works Well With

MoAI Agents:

  • manager-resource-coordinator - Main orchestration (uses coordinator.py)
  • expert-memory-optimizer - Memory-specific agents
  • expert-cpu-optimizer - CPU optimization (future)
  • expert-disk-optimizer - Disk optimization agents

MoAI Skills:

  • moai-lang-python - Python 3.11+ async patterns
  • moai-foundation-core - TRUST 5 quality standards
  • moai-essentials-debug - Debugging subprocess issues

Commands:

  • /macos-resource-optimizer:0-init - Initialize configuration
  • /macos-resource-optimizer:1-analyze - Full system analysis
  • /macos-resource-optimizer:2-optimize - System optimization
  • /macos-resource-optimizer:3-monitor - Continuous monitoring
  • /macos-resource-optimizer:9-feedback - Submit feedback

---

Version: 2.1.0

Last Updated: 2025-11-30 (Phase 2.2 improvements)

Status: βœ… Production Ready (40+ agents, 1 orchestrator, UV scripts)

Architecture: Bash(uv run) delegation pattern via MoAI agents

Real Scripts: Located in .claude/skills/macos-resource-optimizer/scripts/

Actual Performance: 4-5s first run, 2-3s cached (measured 2025-11-30)

More from this repository10

🎯
moai-domain-adb🎯Skill

Automates Android device interactions through comprehensive ADB scripting, enabling game bot development, device management, and computer vision workflows.

🎯
moai-toolkit-codegen🎯Skill

Generates AI-powered code scaffolding for MoAI agents, skills, commands, and tests using enterprise-grade Context7 patterns and UV CLI standards.

🎯
decision-logic-framework🎯Skill

Defines decision rules and naming conventions for structuring Claude Code skills, scripts, and workflows with clear architectural separation.

🎯
moai-foundation-uiux🎯Skill

moai-foundation-uiux skill from rdmptv/adbautoplayer

🎯
moai-lang-unified🎯Skill

Unifies enterprise programming across 25+ languages with patterns, best practices, and Context7 integration for seamless multi-language development.

🎯
moai-workflow-docs🎯Skill

Validates and enhances documentation workflows with specialized scripts for Mermaid diagrams, Korean typography, and comprehensive reporting.

🎯
moai-integration-mcp🎯Skill

Orchestrates universal MCP integrations by seamlessly connecting Figma, Notion, Nano-Banana, and custom services with advanced multi-platform workflow automation.

🎯
moai-connector-mcp🎯Skill

Develops and deploys custom MCP servers with FastMCP, enabling type-safe tool, resource, and prompt exposures for AI model interactions.

🎯
moai-connector-figma🎯Skill

moai-connector-figma skill from rdmptv/adbautoplayer

🎯
moai-toolkit-essentials🎯Skill

Orchestrates AI-powered development workflows with intelligent debugging, refactoring, performance optimization, and quality enforcement across enterprise projects.