🎯

sc-design

🎯Skill

from tony363/superclaude

VibeIndex|
What it does

Designs comprehensive system architectures, APIs, and component interfaces using best practices and industry standards.

sc-design

Installation

Install skill:
npx skills add https://github.com/tony363/superclaude --skill sc-design
8
Last UpdatedJan 25, 2026

Skill Details

SKILL.md

Design system architecture, APIs, and component interfaces with comprehensive specifications. Use when planning architecture, designing APIs, creating component interfaces, or modeling databases.

Overview

# System & Component Design Skill

Architecture planning and interface design with industry best practices.

Quick Start

```bash

# Architecture design

/sc:design [target] --type architecture

# API specification

/sc:design payment-api --type api --format spec

# Database schema

/sc:design e-commerce --type database --format diagram

```

Behavioral Flow

  1. Analyze - Examine requirements and existing system context
  2. Plan - Define design approach based on type and format
  3. Design - Create specifications with best practices
  4. Validate - Ensure maintainability and scalability
  5. Document - Generate diagrams and specifications

Flags

| Flag | Type | Default | Description |

|------|------|---------|-------------|

| --type | string | architecture | architecture, api, component, database |

| --format | string | spec | diagram, spec, code |

Evidence Requirements

This skill does NOT require hard evidence. Deliverables are:

  • Design specifications and diagrams
  • Interface definitions
  • Schema documentation

Design Types

Architecture (`--type architecture`)

  • System structure and component relationships
  • Scalability and reliability patterns
  • Service boundaries and communication

API (`--type api`)

  • RESTful/GraphQL endpoint design
  • Request/response schemas
  • Authentication and versioning

Component (`--type component`)

  • Interface contracts and dependencies
  • State management patterns
  • Integration points

Database (`--type database`)

  • Entity relationships and constraints
  • Normalization and indexing
  • Performance considerations

Output Formats

Diagram (`--format diagram`)

  • ASCII or Mermaid diagrams
  • Component relationship visualization
  • Data flow representation

Specification (`--format spec`)

  • OpenAPI/Swagger for APIs
  • Detailed interface documentation
  • Technical requirements

Code (`--format code`)

  • Interface definitions
  • Type declarations
  • Skeleton implementations

Examples

System Architecture

```

/sc:design user-management --type architecture --format diagram

# Component relationships, data flow, scalability patterns

```

API Design

```

/sc:design payment-api --type api --format spec

# OpenAPI spec with endpoints, schemas, auth patterns

```

Component Interface

```

/sc:design notification-service --type component --format code

# TypeScript/Python interfaces with clear contracts

```

Database Schema

```

/sc:design inventory-db --type database --format diagram

# ER diagrams with relationships and constraints

```

MCP Integration

PAL MCP (Design Validation)

| Tool | When to Use | Purpose |

|------|-------------|---------|

| mcp__pal__planner | Architecture planning | Sequential planning with branching for design decisions |

| mcp__pal__consensus | Design decisions | Multi-model validation of architectural choices |

| mcp__pal__thinkdeep | Complex systems | Deep analysis of system requirements |

| mcp__pal__chat | Brainstorming | Collaborative design exploration |

| mcp__pal__apilookup | API standards | Get current API design best practices |

PAL Usage Patterns

```bash

# Architecture planning

mcp__pal__planner(

step="Designing microservices architecture for e-commerce platform",

step_number=1,

total_steps=4,

more_steps_needed=True

)

# Validate design with consensus

mcp__pal__consensus(

models=[

{"model": "gpt-5.2", "stance": "for"},

{"model": "gemini-3-pro", "stance": "against"},

{"model": "deepseek", "stance": "neutral"}

],

step="Evaluate: Should we use event sourcing for the order management system?"

)

# Deep system analysis

mcp__pal__thinkdeep(

step="Analyzing scalability requirements for real-time notification system",

hypothesis="WebSocket with Redis pub/sub will handle 100k concurrent users",

confidence="medium",

focus_areas=["scalability", "reliability", "performance"]

)

```

Rube MCP (Documentation & Collaboration)

| Tool | When to Use | Purpose |

|------|-------------|---------|

| mcp__rube__RUBE_SEARCH_TOOLS | External tools | Find diagramming, documentation tools |

| mcp__rube__RUBE_MULTI_EXECUTE_TOOL | Share designs | Post to Notion, Confluence, Slack |

| mcp__rube__RUBE_CREATE_UPDATE_RECIPE | Design workflows | Save reusable design processes |

Rube Usage Patterns

```bash

# Create design document in Notion

mcp__rube__RUBE_SEARCH_TOOLS(queries=[

{"use_case": "create notion page", "known_fields": "database:Architecture"}

])

mcp__rube__RUBE_MULTI_EXECUTE_TOOL(tools=[

{"tool_slug": "NOTION_CREATE_PAGE", "arguments": {

"title": "Payment API Design v2",

"content": "## Overview\n..."

}}

])

# Share design for review

mcp__rube__RUBE_MULTI_EXECUTE_TOOL(tools=[

{"tool_slug": "SLACK_SEND_MESSAGE", "arguments": {

"channel": "#architecture",

"text": "New design ready for review: Payment API v2"

}},

{"tool_slug": "JIRA_CREATE_ISSUE", "arguments": {

"project": "ARCH",

"summary": "Review: Payment API Design",

"issue_type": "Task"

}}

])

```

Flags (Extended)

| Flag | Type | Default | Description |

|------|------|---------|-------------|

| --pal-plan | bool | false | Use PAL planner for systematic design |

| --consensus | bool | false | Validate design with multi-model consensus |

| --share | string | - | Share via Rube (notion, confluence, slack) |

| --create-ticket | bool | false | Create review ticket via Rube |

Tool Coordination

  • Read - Requirements analysis
  • Grep/Glob - Pattern analysis
  • Write - Design documentation
  • Bash - External tool integration
  • PAL MCP - Design planning, consensus validation, deep analysis
  • Rube MCP - Documentation sharing, collaboration, review workflows

More from this repository10

🎯
agent-data-engineer🎯Skill

Automates data pipeline creation, transformation, and ETL workflows using AI-driven code generation and intelligent data engineering strategies

🎯
sc-readme🎯Skill

Automatically updates README.md by analyzing git branch changes with multi-model consensus validation for accurate documentation synchronization.

🎯
sc-analyze🎯Skill

Performs comprehensive code analysis across quality, security, performance, and architecture domains, generating actionable insights and recommendations.

🎯
sc-document🎯Skill

Generates comprehensive documentation for code components, APIs, and features across various styles and types, providing structured technical documentation with customizable detail levels.

🎯
sc-estimate🎯Skill

Systematically estimates development tasks by analyzing scope, calculating effort, and providing confidence intervals for time, complexity, and resource planning.

🎯
sc-improve🎯Skill

Systematically improve code quality, performance, and maintainability through multi-persona analysis and safe refactoring.

🎯
sc-workflow🎯Skill

Generates structured implementation workflows by analyzing PRDs and requirements, creating comprehensive, multi-domain development plans with strategic coordination.

🎯
sc-implement🎯Skill

Intelligently implements features, APIs, and components by coordinating expertise, applying best practices, and ensuring systematic development.

🎯
sc-git🎯Skill

Automates intelligent git operations with smart commit generation, branch management, and workflow optimization.

🎯
sc-test🎯Skill

Executes comprehensive tests with coverage analysis, real-time tracking, and automated quality reporting across various test types.