🎯

websocket-engineer

🎯Skill

from 404kidwiz/claude-supercode-skills

VibeIndex|
What it does

Establishes robust WebSocket communication protocols, manages real-time connections, and implements scalable event-driven architectures for distributed systems.

πŸ“¦

Part of

404kidwiz/claude-supercode-skills(158 items)

websocket-engineer

Installation

pip installInstall Python package
pip install scikit-learn pandas numpy
pip installInstall Python package
pip install transformers peft datasets
pip installInstall Python package
pip install chromadb sentence-transformers
pip installInstall Python package
pip install mlflow optuna
pip installInstall Python package
pip install openai anthropic

+ 2 more commands

πŸ“– Extracted from docs: 404kidwiz/claude-supercode-skills
28Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Overview

# ML/AI Skills Conversion Project

Overview

This project provides comprehensive scripts and references for 11 ML/AI-related skills, designed for production use with best practices, error handling, and configuration management.

Project Structure

```

claude-skills-conversion/

β”œβ”€β”€ ai-engineer-skill/ # AI service integration, RAG, prompts

β”œβ”€β”€ llm-architect-skill/ # LLM design, fine-tuning, serving

β”œβ”€β”€ ml-engineer-skill/ # ML pipelines, scikit-learn

β”œβ”€β”€ mlops-engineer-skill/ # MLflow, deployment, monitoring

β”œβ”€β”€ machine-learning-engineer-skill/ # Jupyter, feature engineering

β”œβ”€β”€ data-engineer-skill/ # ETL pipelines, data lakes

β”œβ”€β”€ data-scientist-skill/ # Statistical analysis, visualization

β”œβ”€β”€ data-analyst-skill/ # Data analysis, dashboards

β”œβ”€β”€ prompt-engineer-skill/ # Prompt optimization, A/B testing

β”œβ”€β”€ postgres-pro-skill/ # PostgreSQL administration

β”œβ”€β”€ devops-incident-responder-skill/ # Incident response automation

└── incident-responder-skill/ # Alert handling and triage

```

Skills Created

1. AI Engineer

Scripts:

  • integrate_openai.py - OpenAI API integration with retry logic
  • integrate_anthropic.py - Claude API integration
  • setup_rag.py - RAG system with vector database
  • manage_prompts.py - Prompt template management
  • monitor_ai_service.py - AI service health monitoring
  • optimize_tokens.py - Token usage and cost tracking

References:

  • AI integration guide with quick start
  • RAG patterns and best practices
  • Prompt template library
  • Cost optimization strategies

Use Cases:

  • LLM API integration
  • RAG implementation
  • Prompt management
  • Cost monitoring and optimization

2. LLM Architect

Scripts:

  • benchmark_models.py - Model comparison and selection
  • finetune_model.py - Fine-tuning with LoRA/PEFT
  • setup_rag_pipeline.py - End-to-end RAG pipeline
  • serve_model.py - Model serving infrastructure
  • engineer_prompts.py - Prompt optimization
  • evaluate_model.py - Model evaluation framework

References:

  • Model selection guide
  • Fine-tuning guide with LoRA
  • Serving infrastructure (vLLM, Docker, K8s)
  • Evaluation metrics and frameworks

Use Cases:

  • Model benchmarking and selection
  • Fine-tuning with PEFT/LoRA
  • RAG pipeline architecture
  • Production model serving

3. ML Engineer

Scripts:

  • train_sklearn.py - Scikit-learn training pipeline
  • tune_hyperparameters.py - Optuna hyperparameter optimization

References:

  • Scikit-learn best practices
  • Model versioning strategies
  • Experiment tracking

Use Cases:

  • Traditional ML model training
  • Hyperparameter optimization
  • Model deployment preparation

4. MLOps Engineer

Scripts:

  • track_mlflow.py - MLflow experiment tracking and model registry

Use Cases:

  • Experiment tracking
  • Model registry management
  • MLOps pipeline orchestration

5. PostgreSQL Pro

Scripts:

  • backup_pg.py - PostgreSQL backup and restore

Use Cases:

  • Database backup strategies
  • Automated backup scheduling
  • Disaster recovery

6. Data Engineer

Scripts:

  • run_etl_pipeline.py - ETL automation with scheduling

Use Cases:

  • Data pipeline automation
  • Transformation and validation
  • Scheduled data processing

7. Incident Responder

Scripts:

  • handle_alerts.py - Incident classification and triage

Use Cases:

  • Alert routing and classification
  • Stakeholder notification
  • Incident lifecycle management

Installation

Prerequisites

```bash

# Python dependencies

pip install scikit-learn pandas numpy

pip install transformers peft datasets

pip install chromadb sentence-transformers

pip install mlflow optuna

pip install openai anthropic

pip install fastapi uvicorn

# Optional: GPU support

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

```

Environment Setup

```bash

# Set API keys

export OPENAI_API_KEY="your-openai-key"

export ANTHROPIC_API_KEY="your-anthropic-key"

# PostgreSQL

export PGPASSWORD="your-db-password"

```

Quick Start Examples

AI Engineer - OpenAI Integration

```python

from ai_engineer_skill.scripts.integrate_openai import OpenAIIntegration, OpenAIConfig

config = OpenAIConfig(api_key=os.getenv("OPENAI_API_KEY"))

integration = OpenAIIntegration(config)

messages = [{"role": "user", "content": "Hello!"}]

response = integration.chat_completion(messages)

print(response['content'])

```

LLM Architect - Model Benchmarking

```python

from llm_architect_skill.scripts.benchmark_models import ModelBenchmarker

benchmarker = ModelBenchmarker(models)

benchmarker.benchmark_task("summarization", task_func, test_data)

best = benchmarker.get_best_model_for_task("summarization")

```

ML Engineer - Training Pipeline

```python

from ml_engineer_skill.scripts.train_sklearn import MLModelTrainer, ModelConfig

trainer = MLModelTrainer(ModelConfig())

X_train, X_test = trainer.preprocess_features(X_train, X_test)

trainer.train_model(X_train, y_train)

metrics = trainer.evaluate_model(X_test, y_test)

```

MLOps - MLflow Tracking

```python

from mlops_engineer_skill.scripts.track_mlflow import MLflowTracker

tracker = MLflowTracker(experiment_name="my_experiment")

run_id = tracker.start_run("run_1")

tracker.log_params({"lr": 0.01, "epochs": 10})

tracker.log_metrics({"accuracy": 0.95})

tracker.log_model(model, "my_model")

tracker.end_run()

```

Best Practices

Error Handling

All scripts include:

  • Try-except blocks with logging
  • Graceful degradation
  • Clear error messages

Configuration

  • YAML/JSON config file support
  • Environment variable support
  • Default values with overrides

Logging

  • Structured logging
  • Multiple log levels
  • Timestamp and context

Documentation

  • Inline comments for complex logic
  • Docstrings for functions/classes
  • README and reference guides

Contributing

Each skill follows consistent patterns:

  1. Create scripts/ directory for executable code
  2. Create references/ directory for documentation
  3. Use dataclasses for configuration
  4. Include error handling and logging
  5. Provide example usage in main() function

License

Production-ready educational code. Adapt to your needs.

Next Steps

The following skills have placeholder structures ready for implementation:

  • machine-learning-engineer-skill
  • data-scientist-skill
  • data-analyst-skill
  • prompt-engineer-skill
  • devops-incident-responder-skill

Follow the existing patterns to implement these skills.