youtube-research
π―Skillfrom bradautomates/head-of-content
youtube-research skill from bradautomates/head-of-content
Installation
npx skills add https://github.com/bradautomates/head-of-content --skill youtube-researchSkill Details
|
Overview
# YouTube Research
Research high-performing YouTube outlier videos, analyze top content with AI, and generate actionable reports.
Prerequisites
TUBELAB_API_KEYenvironment variable. Get key from https://tubelab.net/settings/apiGEMINI_API_KEYenvironment variable (for video analysis)google-genaiandrequestsPython packages
Workflow
Step 1: Create Run Folder
```bash
mkdir -p youtube-research/$(date +%Y-%m-%d_%H%M%S)
```
Step 2: Get Channel ID
Read .claude/context/youtube-channel.md to get the channel ID.
Step 3: Fetch Channel Videos
```bash
python scripts/get_channel_videos.py CHANNEL_ID --format summary
```
This returns JSON with the channel's video titles and view counts.
Step 4: Analyze Channel
Analyze the channel data to extract:
- keywords: 4 search terms for the channel's direct niche
- adjacent-keywords: 4 search terms for topics the same audience watches
- audience: 2-3 profiles with objections, transformations, stakes
- formulas: Reusable title templates
See references/channel-analysis-schema.md for the full schema and example output.
Step 5: Search for Outliers
Run the outlier search with both keyword sets:
```bash
python .claude/skills/youtube-research/scripts/find_outliers.py \
--keywords "keyword1" "keyword2" "keyword3" "keyword4" \
--adjacent-keywords "adjacent1" "adjacent2" "adjacent3" "adjacent4" \
--output-dir youtube-research/{run-folder} \
--top 5
```
This runs two searches:
- Direct niche: keywords with 5K+ views threshold
- Adjacent audience: adjacent-keywords with 10K+ views threshold
Output files:
outliers.json- All outliers normalized for video analysisreport.md- Basic markdown reportthumbnails/*.jpg- Video thumbnailstranscripts/*.txt- Video transcripts
Step 6: Filter Relevant Videos for Analysis
Read outliers.json and the user's niche from .claude/context/youtube-channel.md.
CRITICAL: Select MAX 3 videos that are most relevant to the user's niche. Filter by:
- Title relevance: Title contains keywords related to user's niche/topics
- Transcript relevance: If transcript exists, check it mentions relevant topics
- Direct niche priority: Prefer videos from direct keyword search over adjacent
Skip videos that are clearly outside the user's content style (e.g., entertainment/vlogs when user does tutorials).
Write the filtered videos to {RUN_FOLDER}/filtered-outliers.json:
```json
{
"outliers": [/ max 3 relevant videos /],
"filter_reason": "Selected based on relevance to [user's niche]"
}
```
Step 7: Analyze Top Videos with AI
```bash
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py \
--input {RUN_FOLDER}/filtered-outliers.json \
--output {RUN_FOLDER}/video-analysis.json \
--platform youtube \
--max-videos 3
```
Extracts from each video:
- Hook technique and replicable formula
- Content structure and sections
- Retention techniques
- CTA strategy
See the video-content-analyzer skill for full output schema and hook/format types.
Step 8: Generate Final Report
Read {RUN_FOLDER}/outliers.json and {RUN_FOLDER}/video-analysis.json, then generate {RUN_FOLDER}/report.md.
Report Structure:
```markdown
# YouTube Research Report
Generated: {date}
Top Performing Hooks
Ranked by engagement. Use these formulas for your content.
Hook 1: {technique} - {channelTitle}
- Video: "{title}"
- Opening: "{opening_line}"
- Why it works: {attention_grab}
- Replicable Formula: {replicable_formula}
- Views: {viewCount} | zScore: {zScore}
- [Watch Video]({url})
[Repeat for each analyzed video]
Content Structure Patterns
| Video | Format | Pacing | Key Retention Techniques |
|-------|--------|--------|--------------------------|
| {title} | {format} | {pacing} | {techniques} |
CTA Strategies
| Video | CTA Type | CTA Text | Placement |
|-------|----------|----------|-----------|
| {title} | {type} | "{cta_text}" | {placement} |
All Outliers
Direct Niche
| Rank | Channel | Title | Views | zScore |
|------|---------|-------|-------|--------|
[List direct niche outliers]
Adjacent Audience
| Rank | Channel | Title | Views | zScore |
|------|---------|-------|-------|--------|
[List adjacent outliers]
Actionable Takeaways
[Synthesize patterns into 4-6 specific recommendations based on video analysis]
```
Focus on actionable insights. The "Top Performing Hooks" section with replicable formulas should be prominent.
Quick Reference
Full pipeline:
```bash
RUN_FOLDER="youtube-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && \
python .claude/skills/youtube-research/scripts/find_outliers.py \
--keywords "k1" "k2" "k3" "k4" \
--adjacent-keywords "a1" "a2" "a3" "a4" \
--output-dir "$RUN_FOLDER" --top 5
```
Then filter outliers for niche relevance (max 3), run video analysis, and generate the report.
Script Reference
get_channel_videos.py
```
python .claude/skills/youtube-research/scripts/get_channel_videos.py CHANNEL_ID [--format json|summary]
```
| Arg | Description |
|-----|-------------|
| CHANNEL_ID | YouTube channel ID (24 chars) |
| --format | json (full data) or summary (for analysis) |
find_outliers.py
```
python .claude/skills/youtube-research/scripts/find_outliers.py --keywords K1 K2 K3 K4 --adjacent-keywords A1 A2 A3 A4 --output-dir DIR [options]
```
| Arg | Description |
|-----|-------------|
| --keywords | Direct niche keywords (4 recommended) |
| --adjacent-keywords | Adjacent topic keywords (4 recommended) |
| --output-dir | Output directory (required) |
| --top | Videos per category (default: 5) |
| --days | Days back to search (default: 30) |
| --json | Also save raw JSON data |
Output: outliers.json, report.md, thumbnails/, transcripts/
Scoring Algorithm
Videos ranked by: zScore Γ recency_boost
- zScore: How much video outperforms its channel average
- recency_boost: 1.0 for today, decays 5%/day (min 0.3Γ)