🎯

optimizing-performance

🎯Skill

from cloudai-x/claude-workflow

VibeIndex|
What it does

Optimizes application performance by profiling, identifying bottlenecks, and applying targeted improvements across frontend, backend, and database layers.

πŸ“¦

Part of

cloudai-x/claude-workflow(8 items)

optimizing-performance

Installation

PythonRun Python server
python -m cProfile -o profile.stats app.py
PythonRun Python server
python -m pstats profile.stats
πŸ“– Extracted from docs: cloudai-x/claude-workflow
14Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Analyzes and optimizes application performance across frontend, backend, and database layers. Use when diagnosing slowness, improving load times, optimizing queries, reducing bundle size, or when asked about performance issues.

Overview

# Optimizing Performance

Performance Optimization Workflow

Copy this checklist and track progress:

```

Performance Optimization Progress:

  • [ ] Step 1: Measure baseline performance
  • [ ] Step 2: Identify bottlenecks
  • [ ] Step 3: Apply targeted optimizations
  • [ ] Step 4: Measure again and compare
  • [ ] Step 5: Repeat if targets not met

```

Critical Rule: Never optimize without data. Always profile before and after changes.

Step 1: Measure Baseline

Profiling Commands

```bash

# Node.js profiling

node --prof app.js

node --prof-process isolate*.log > profile.txt

# Python profiling

python -m cProfile -o profile.stats app.py

python -m pstats profile.stats

# Web performance

lighthouse https://example.com --output=json

```

Step 2: Identify Bottlenecks

Common Bottleneck Categories

| Category | Symptoms | Tools |

|----------|----------|-------|

| CPU | High CPU usage, slow computation | Profiler, flame graphs |

| Memory | High RAM, GC pauses, OOM | Heap snapshots, memory profiler |

| I/O | Slow disk/network, waiting | strace, network inspector |

| Database | Slow queries, lock contention | Query analyzer, EXPLAIN |

Step 3: Apply Optimizations

Frontend Optimizations

Bundle Size:

```javascript

// ❌ Import entire library

import _ from 'lodash';

// βœ… Import only needed functions

import debounce from 'lodash/debounce';

// βœ… Use dynamic imports for code splitting

const HeavyComponent = lazy(() => import('./HeavyComponent'));

```

Rendering:

```javascript

// ❌ Render on every parent update

function Child({ data }) {

return ;

}

// βœ… Memoize when props don't change

const Child = memo(function Child({ data }) {

return ;

});

// βœ… Use useMemo for expensive computations

const processed = useMemo(() => expensiveCalc(data), [data]);

```

Images:

```html

src="image.webp"

srcset="image-300.webp 300w, image-600.webp 600w"

sizes="(max-width: 600px) 300px, 600px"

loading="lazy"

decoding="async"

/>

```

Backend Optimizations

Database Queries:

```sql

-- ❌ N+1 Query Problem

SELECT * FROM users;

-- Then for each user:

SELECT * FROM orders WHERE user_id = ?;

-- βœ… Single query with JOIN

SELECT u., o.

FROM users u

LEFT JOIN orders o ON u.id = o.user_id;

-- βœ… Or use pagination

SELECT * FROM users LIMIT 100 OFFSET 0;

```

Caching Strategy:

```javascript

// Multi-layer caching

const getUser = async (id) => {

// L1: In-memory cache (fastest)

let user = memoryCache.get(user:${id});

if (user) return user;

// L2: Redis cache (fast)

user = await redis.get(user:${id});

if (user) {

memoryCache.set(user:${id}, user, 60);

return JSON.parse(user);

}

// L3: Database (slow)

user = await db.users.findById(id);

await redis.setex(user:${id}, 3600, JSON.stringify(user));

memoryCache.set(user:${id}, user, 60);

return user;

};

```

Async Processing:

```javascript

// ❌ Blocking operation

app.post('/upload', async (req, res) => {

await processVideo(req.file); // Takes 5 minutes

res.send('Done');

});

// βœ… Queue for background processing

app.post('/upload', async (req, res) => {

const jobId = await queue.add('processVideo', { file: req.file });

res.send({ jobId, status: 'processing' });

});

```

Algorithm Optimizations

```javascript

// ❌ O(n²) - nested loops

function findDuplicates(arr) {

const duplicates = [];

for (let i = 0; i < arr.length; i++) {

for (let j = i + 1; j < arr.length; j++) {

if (arr[i] === arr[j]) duplicates.push(arr[i]);

}

}

return duplicates;

}

// βœ… O(n) - hash map

function findDuplicates(arr) {

const seen = new Set();

const duplicates = new Set();

for (const item of arr) {

if (seen.has(item)) duplicates.add(item);

seen.add(item);

}

return [...duplicates];

}

```

Step 4: Measure Again

After applying optimizations, re-run profiling and compare:

```

Comparison Checklist:

  • [ ] Run same profiling tools as baseline
  • [ ] Compare metrics before vs after
  • [ ] Verify no regressions in other areas
  • [ ] Document improvement percentages

```

Performance Targets

Web Vitals

| Metric | Good | Needs Work | Poor |

|--------|------|------------|------|

| LCP | < 2.5s | 2.5-4s | > 4s |

| FID | < 100ms | 100-300ms | > 300ms |

| CLS | < 0.1 | 0.1-0.25 | > 0.25 |

| TTFB | < 800ms | 800ms-1.8s | > 1.8s |

API Performance

| Metric | Target |

|--------|--------|

| P50 Latency | < 100ms |

| P95 Latency | < 500ms |

| P99 Latency | < 1s |

| Error Rate | < 0.1% |

Validation

After optimization, validate results:

```

Performance Validation:

  • [ ] Metrics improved from baseline
  • [ ] No functionality regressions
  • [ ] No new errors introduced
  • [ ] Changes are sustainable (not one-time fixes)
  • [ ] Performance gains documented

```

If targets not met, return to Step 2 and identify remaining bottlenecks.