🎯

database-optimization

🎯Skill

from congdon1207/agents.md

VibeIndex|
What it does

Optimizes database performance by resolving N+1 query problems, implementing efficient data fetching strategies, and improving query efficiency across MongoDB, SQL Server, and PostgreSQL.

πŸ“¦

Part of

congdon1207/agents.md(82 items)

database-optimization

Installation

git cloneClone repository
git clone https://github.com/your-repo/AGENTS.md
πŸ“– Extracted from docs: congdon1207/agents.md
1Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Use when optimizing database queries, indexes, N+1 problems, slow queries, or analyzing query performance. Triggers on keywords like "slow query", "N+1", "index", "query optimization", "database performance", "eager loading".

Overview

# Database Optimization

Expert database performance agent for EasyPlatform. Optimizes queries, indexes, and data access patterns for MongoDB, SQL Server, and PostgreSQL.

Common Performance Issues

N+1 Query Problem

```csharp

// BAD: N+1 queries - one query per employee's department

var employees = await repo.GetAllAsync(e => e.CompanyId == companyId, ct);

foreach (var emp in employees)

{

var dept = await deptRepo.GetByIdAsync(emp.DepartmentId, ct); // N queries!

}

// GOOD: Eager loading with loadRelatedEntities

var employees = await repo.GetAllAsync(

e => e.CompanyId == companyId,

ct,

loadRelatedEntities: e => e.Department); // Single query with join

// GOOD: Batch load related entities

var employees = await repo.GetAllAsync(e => e.CompanyId == companyId, ct);

var deptIds = employees.Select(e => e.DepartmentId).Distinct().ToList();

var departments = await deptRepo.GetByIdsAsync(deptIds, ct);

var deptMap = departments.ToDictionary(d => d.Id);

employees.ForEach(e => e.Department = deptMap.GetValueOrDefault(e.DepartmentId));

```

Select Only Needed Columns

```csharp

// BAD: Fetching entire entity when only ID needed

var employee = await repo.GetByIdAsync(id, ct);

return employee.Id;

// GOOD: Projection to fetch only needed data

var employeeId = await repo.FirstOrDefaultAsync(

query => query

.Where(Employee.UniqueExpr(userId, companyId))

.Select(e => e.Id), // Only fetch ID column

ct);

```

Parallel Independent Queries

```csharp

// BAD: Sequential queries that could run in parallel

var count = await repo.CountAsync(filter, ct);

var items = await repo.GetAllAsync(filter, ct);

var stats = await statsRepo.GetAsync(companyId, ct);

// GOOD: Parallel tuple queries

var (count, items, stats) = await (

repo.CountAsync((uow, q) => queryBuilder(uow, q), ct),

repo.GetAllAsync((uow, q) => queryBuilder(uow, q).PageBy(skip, take), ct),

statsRepo.GetAsync(companyId, ct)

);

```

Query Optimization Patterns

GetQueryBuilder for Reusable Queries

```csharp

protected override async Task HandleAsync(Query req, CancellationToken ct)

{

// Define query once, reuse for count and data

var queryBuilder = repo.GetQueryBuilder((uow, q) => q

.Where(Employee.OfCompanyExpr(RequestContext.CurrentCompanyId()))

.WhereIf(req.Statuses.Any(), e => req.Statuses.Contains(e.Status))

.WhereIf(req.DepartmentId.IsNotNullOrEmpty(), e => e.DepartmentId == req.DepartmentId)

.PipeIf(req.SearchText.IsNotNullOrEmpty(), q =>

fullTextSearch.Search(q, req.SearchText, Employee.SearchColumns())));

// Parallel execution

var (total, items) = await (

repo.CountAsync((uow, q) => queryBuilder(uow, q), ct),

repo.GetAllAsync((uow, q) => queryBuilder(uow, q)

.OrderByDescending(e => e.CreatedDate)

.PageBy(req.SkipCount, req.MaxResultCount), ct)

);

return new Result(items, total);

}

```

Conditional Filtering with WhereIf

```csharp

// Builds efficient query with only needed conditions

var query = repo.GetQueryBuilder((uow, q) => q

.Where(e => e.CompanyId == companyId) // Always applied

.WhereIf(status.HasValue, e => e.Status == status) // Only if provided

.WhereIf(deptIds.Any(), e => deptIds.Contains(e.DepartmentId))

.WhereIf(dateFrom.HasValue, e => e.CreatedDate >= dateFrom)

.WhereIf(dateTo.HasValue, e => e.CreatedDate <= dateTo));

```

Full-Text Search Optimization

```csharp

// Define searchable columns in entity

public static Expression>[] DefaultFullTextSearchColumns()

=> [e => e.FullName, e => e.Email, e => e.EmployeeCode, e => e.FullTextSearch];

// Use full-text search service

.PipeIf(searchText.IsNotNullOrEmpty(), q => fullTextSearch.Search(

q,

searchText,

Employee.DefaultFullTextSearchColumns(),

fullTextAccurateMatch: true, // Exact phrase match

includeStartWithProps: [e => e.FullName, e => e.EmployeeCode] // Prefix matching

));

```

Index Recommendations

MongoDB Indexes

```csharp

// Single field index - for equality queries

{ "CompanyId": 1 }

// Compound index - for filtered queries

{ "CompanyId": 1, "Status": 1, "CreatedDate": -1 }

// Text index - for full-text search

{ "FullName": "text", "Email": "text", "EmployeeCode": "text" }

// Sparse index - for optional fields

{ "ExternalId": 1, sparse: true }

```

SQL Server / PostgreSQL Indexes

```sql

-- Covering index for common query

CREATE INDEX IX_Employee_Company_Status

ON Employees (CompanyId, Status)

INCLUDE (FullName, Email, CreatedDate);

-- Filtered index for active records

CREATE INDEX IX_Employee_Active

ON Employees (CompanyId, CreatedDate)

WHERE Status = 'Active' AND IsDeleted = 0;

-- Full-text index

CREATE FULLTEXT INDEX ON Employees (FullName, Email)

KEY INDEX PK_Employees;

```

Pagination Best Practices

```csharp

// GOOD: Keyset pagination for large datasets (cursor-based)

var items = await repo.GetAllAsync(q => q

.Where(e => e.CompanyId == companyId)

.Where(e => e.Id > lastId) // Cursor

.OrderBy(e => e.Id)

.Take(pageSize), ct);

// GOOD: Offset pagination for moderate datasets

var items = await repo.GetAllAsync(q => q

.Where(filter)

.OrderByDescending(e => e.CreatedDate)

.PageBy(skip, take), ct); // Platform helper

// BAD: Skip without limit (fetches all then skips)

var items = await repo.GetAllAsync(q => q.Skip(1000), ct);

```

Bulk Operations

```csharp

// Bulk insert

await repo.CreateManyAsync(entities, ct);

// Bulk update (with optimization flags)

await repo.UpdateManyAsync(

entities,

dismissSendEvent: true, // Skip entity events for performance

checkDiff: false, // Skip change detection

ct);

// Bulk delete by expression

await repo.DeleteManyAsync(e => e.Status == Status.Deleted && e.DeletedDate < cutoffDate, ct);

```

Performance Analysis Workflow

Phase 1: Identify Slow Queries

  1. Check application logs for slow query warnings
  2. Review query patterns in handlers
  3. Look for N+1 patterns (loops with DB calls)

Phase 2: Analyze Query Plan

```csharp

// MongoDB - Check indexes used

db.employees.find({ companyId: "x", status: "Active" }).explain("executionStats")

// SQL Server - Check execution plan

SET STATISTICS IO ON

SELECT * FROM Employees WHERE CompanyId = 'x' AND Status = 'Active'

```

Phase 3: Optimize

  1. Add missing indexes
  2. Use eager loading for related entities
  3. Add projections for partial data needs
  4. Parallelize independent queries
  5. Implement caching for frequently accessed data

Optimization Checklist

  • [ ] N+1 queries identified and fixed?
  • [ ] Eager loading for related entities?
  • [ ] Projections for partial data needs?
  • [ ] Parallel queries for independent operations?
  • [ ] Proper indexes for filter/sort columns?
  • [ ] Pagination implemented correctly?
  • [ ] Full-text search for text queries?
  • [ ] Bulk operations for batch processing?

Anti-Patterns

  • Loading entire collections: Always filter and paginate
  • Fetching unused data: Use projections
  • Sequential independent queries: Use parallel tuple queries
  • Index on every column: Only index frequently queried fields
  • Skip without ordering: Always order before pagination