🎯

anomaly-detection

🎯Skill

from dadbodgeoff/drift

VibeIndex|
What it does

Detects production system anomalies through configurable rules, cooldown periods, and error pattern tracking to prevent alert fatigue.

πŸ“¦

Part of

dadbodgeoff/drift(69 items)

anomaly-detection

Installation

npm installInstall npm package
npm install -g driftdetect
npm installInstall npm package
npm install -g driftdetect@latest
npm installInstall npm package
npm install -g driftdetect-mcp
Claude Desktop ConfigurationAdd this to your claude_desktop_config.json
{ "mcpServers": { "drift": { "command": "driftdetect-mcp" } } ...
πŸ“– Extracted from docs: dadbodgeoff/drift
4Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Rule-based anomaly detection for production systems with configurable thresholds, cooldown periods to prevent alert storms, and error pattern tracking for repeated failures.

Overview

# Anomaly Detection

Rule-based anomaly detection with cooldowns and error pattern tracking.

When to Use This Skill

  • Detecting slow job degradation before failures
  • Tracking error rate creep over time
  • Identifying repeated error patterns
  • Preventing alert fatigue with cooldowns

Core Concepts

Production systems fail in subtle ways - jobs getting slower, error rates creeping up, same errors repeating. The solution:

  1. Configurable rules with severity levels
  2. Cooldown periods to prevent alert storms
  3. Error pattern tracking for repeated failures
  4. Violation decay to reward recovery

Implementation

TypeScript

```typescript

enum AnomalyType {

SLOW_JOB = 'slow_job',

HIGH_FAILURE_RATE = 'high_failure_rate',

WORKER_UNHEALTHY = 'worker_unhealthy',

QUEUE_BACKLOG = 'queue_backlog',

TIMEOUT_SPIKE = 'timeout_spike',

REPEATED_ERROR = 'repeated_error',

MEMORY_SPIKE = 'memory_spike',

CPU_SPIKE = 'cpu_spike',

}

enum AnomalySeverity {

CRITICAL = 'critical',

HIGH = 'high',

MEDIUM = 'medium',

LOW = 'low',

}

interface AnomalyAlert {

id: string;

anomalyType: AnomalyType;

severity: AnomalySeverity;

workerName: string;

jobId?: string;

message: string;

details: Record;

detectedAt: Date;

resolvedAt?: Date;

resolution?: string;

}

interface RuleContext {

workerName: string;

status: string;

failureRate: number;

queueDepth: number;

durationMs: number;

expectedDurationMs: number;

timeoutCount: number;

errorRepeatCount: number;

errorMessage: string;

memoryMb: number;

cpuPercent: number;

}

interface AnomalyRule {

anomalyType: AnomalyType;

severity: AnomalySeverity;

description: string;

checkFn: (ctx: RuleContext) => boolean;

messageTemplate: string;

cooldownSeconds: number;

}

const ANOMALY_RULES: AnomalyRule[] = [

{

anomalyType: AnomalyType.SLOW_JOB,

severity: AnomalySeverity.MEDIUM,

description: 'Job execution time exceeds expected duration',

checkFn: (ctx) => ctx.durationMs > ctx.expectedDurationMs * 2,

messageTemplate: 'Job took {durationMs}ms, expected {expectedDurationMs}ms',

cooldownSeconds: 300,

},

{

anomalyType: AnomalyType.HIGH_FAILURE_RATE,

severity: AnomalySeverity.HIGH,

description: 'Worker failure rate exceeds threshold',

checkFn: (ctx) => ctx.failureRate > 15,

messageTemplate: 'Failure rate {failureRate}% exceeds 15% threshold',

cooldownSeconds: 600,

},

{

anomalyType: AnomalyType.WORKER_UNHEALTHY,

severity: AnomalySeverity.CRITICAL,

description: 'Worker health status is unhealthy',

checkFn: (ctx) => ctx.status === 'unhealthy',

messageTemplate: 'Worker {workerName} is unhealthy',

cooldownSeconds: 300,

},

{

anomalyType: AnomalyType.QUEUE_BACKLOG,

severity: AnomalySeverity.MEDIUM,

description: 'Queue depth exceeds threshold',

checkFn: (ctx) => ctx.queueDepth > 50,

messageTemplate: 'Queue depth {queueDepth} exceeds threshold',

cooldownSeconds: 300,

},

{

anomalyType: AnomalyType.REPEATED_ERROR,

severity: AnomalySeverity.HIGH,

description: 'Same error repeated multiple times',

checkFn: (ctx) => ctx.errorRepeatCount > 5,

messageTemplate: 'Error "{errorMessage}" repeated {errorRepeatCount} times',

cooldownSeconds: 900,

},

{

anomalyType: AnomalyType.MEMORY_SPIKE,

severity: AnomalySeverity.HIGH,

description: 'Memory usage exceeds threshold',

checkFn: (ctx) => ctx.memoryMb > 1024,

messageTemplate: 'Memory usage {memoryMb}MB exceeds 1GB threshold',

cooldownSeconds: 300,

},

];

class AnomalyDetector {

private alerts = new Map();

private cooldowns = new Map();

private errorCounts = new Map>();

private timeoutCounts = new Map();

private alertIdCounter = 0;

checkWorkerHealth(

workerName: string,

health: {

status: string;

jobsProcessed: number;

jobsFailed: number;

queueDepth: number;

lastDurationMs: number;

expectedDurationMs: number;

memoryMb: number;

cpuPercent: number;

}

): AnomalyAlert[] {

const detected: AnomalyAlert[] = [];

const failureRate = health.jobsProcessed > 0

? (health.jobsFailed / health.jobsProcessed) * 100

: 0;

const ctx: RuleContext = {

workerName,

status: health.status,

failureRate,

queueDepth: health.queueDepth,

durationMs: health.lastDurationMs,

expectedDurationMs: health.expectedDurationMs,

timeoutCount: this.timeoutCounts.get(workerName) || 0,

errorRepeatCount: 0,

errorMessage: '',

memoryMb: health.memoryMb,

cpuPercent: health.cpuPercent,

};

for (const rule of ANOMALY_RULES) {

if (this.isOnCooldown(workerName, rule.anomalyType)) continue;

if (rule.checkFn(ctx)) {

const alert = this.createAlert(workerName, rule, ctx);

detected.push(alert);

this.setCooldown(workerName, rule.anomalyType, rule.cooldownSeconds);

}

}

return detected;

}

checkJobExecution(

workerName: string,

jobId: string,

durationMs: number,

expectedDurationMs: number,

success: boolean,

error?: string

): AnomalyAlert[] {

const detected: AnomalyAlert[] = [];

if (!success && error) {

this.trackError(workerName, error);

}

// Check slow job

if (durationMs > expectedDurationMs * 2) {

if (!this.isOnCooldown(workerName, AnomalyType.SLOW_JOB)) {

const rule = ANOMALY_RULES[0];

const alert = this.createAlert(workerName, rule, {

durationMs,

expectedDurationMs,

} as RuleContext);

alert.jobId = jobId;

detected.push(alert);

this.setCooldown(workerName, AnomalyType.SLOW_JOB, 300);

}

}

// Check repeated errors

if (error) {

const errorCounts = this.errorCounts.get(workerName);

const count = errorCounts?.get(error.slice(0, 200)) || 0;

if (count > 5 && !this.isOnCooldown(workerName, AnomalyType.REPEATED_ERROR)) {

const rule = ANOMALY_RULES.find(r => r.anomalyType === AnomalyType.REPEATED_ERROR)!;

const alert = this.createAlert(workerName, rule, {

errorMessage: error.slice(0, 100),

errorRepeatCount: count,

} as RuleContext);

detected.push(alert);

this.setCooldown(workerName, AnomalyType.REPEATED_ERROR, 900);

}

}

return detected;

}

resolveAnomaly(alertId: string, resolution: string): boolean {

const alert = this.alerts.get(alertId);

if (!alert || alert.resolvedAt) return false;

alert.resolvedAt = new Date();

alert.resolution = resolution;

return true;

}

getActiveAnomalies(): AnomalyAlert[] {

return Array.from(this.alerts.values())

.filter(a => !a.resolvedAt)

.sort((a, b) => {

const order = { critical: 0, high: 1, medium: 2, low: 3 };

return order[a.severity] - order[b.severity];

});

}

private trackError(workerName: string, error: string): void {

if (!this.errorCounts.has(workerName)) {

this.errorCounts.set(workerName, new Map());

}

const counts = this.errorCounts.get(workerName)!;

const key = error.slice(0, 200);

counts.set(key, (counts.get(key) || 0) + 1);

}

private createAlert(workerName: string, rule: AnomalyRule, ctx: Partial): AnomalyAlert {

const id = anomaly_${++this.alertIdCounter}_${Date.now()};

let message = rule.messageTemplate;

for (const [key, value] of Object.entries(ctx)) {

message = message.replace({${key}}, String(value));

}

const alert: AnomalyAlert = {

id,

anomalyType: rule.anomalyType,

severity: rule.severity,

workerName,

message,

details: ctx as Record,

detectedAt: new Date(),

};

this.alerts.set(id, alert);

return alert;

}

private isOnCooldown(workerName: string, anomalyType: AnomalyType): boolean {

const key = ${workerName}:${anomalyType};

const cooldownEnd = this.cooldowns.get(key);

return cooldownEnd !== undefined && cooldownEnd > new Date();

}

private setCooldown(workerName: string, anomalyType: AnomalyType, seconds: number): void {

const key = ${workerName}:${anomalyType};

this.cooldowns.set(key, new Date(Date.now() + seconds * 1000));

}

}

// Singleton

let detector: AnomalyDetector | null = null;

export function getAnomalyDetector(): AnomalyDetector {

if (!detector) {

detector = new AnomalyDetector();

}

return detector;

}

```

Python

```python

from dataclasses import dataclass, field

from datetime import datetime, timezone

from typing import Dict, List, Optional, Callable

from enum import Enum

class AnomalyType(str, Enum):

SLOW_JOB = "slow_job"

HIGH_FAILURE_RATE = "high_failure_rate"

WORKER_UNHEALTHY = "worker_unhealthy"

QUEUE_BACKLOG = "queue_backlog"

TIMEOUT_SPIKE = "timeout_spike"

REPEATED_ERROR = "repeated_error"

MEMORY_SPIKE = "memory_spike"

class AnomalySeverity(str, Enum):

CRITICAL = "critical"

HIGH = "high"

MEDIUM = "medium"

LOW = "low"

@dataclass

class AnomalyAlert:

id: str

anomaly_type: AnomalyType

severity: AnomalySeverity

worker_name: str

message: str

details: Dict

detected_at: datetime = field(default_factory=lambda: datetime.now(timezone.utc))

job_id: Optional[str] = None

resolved_at: Optional[datetime] = None

resolution: Optional[str] = None

@dataclass

class RuleContext:

worker_name: str

status: str = "healthy"

failure_rate: float = 0.0

queue_depth: int = 0

duration_ms: float = 0.0

expected_duration_ms: float = 0.0

timeout_count: int = 0

error_repeat_count: int = 0

error_message: str = ""

memory_mb: float = 0.0

cpu_percent: float = 0.0

@dataclass

class AnomalyRule:

anomaly_type: AnomalyType

severity: AnomalySeverity

description: str

check_fn: Callable[[RuleContext], bool]

message_template: str

cooldown_seconds: int

ANOMALY_RULES: List[AnomalyRule] = [

AnomalyRule(

anomaly_type=AnomalyType.SLOW_JOB,

severity=AnomalySeverity.MEDIUM,

description="Job execution time exceeds expected duration",

check_fn=lambda ctx: ctx.duration_ms > ctx.expected_duration_ms * 2,

message_template="Job took {duration_ms}ms, expected {expected_duration_ms}ms",

cooldown_seconds=300,

),

AnomalyRule(

anomaly_type=AnomalyType.HIGH_FAILURE_RATE,

severity=AnomalySeverity.HIGH,

description="Worker failure rate exceeds threshold",

check_fn=lambda ctx: ctx.failure_rate > 15,

message_template="Failure rate {failure_rate}% exceeds 15% threshold",

cooldown_seconds=600,

),

AnomalyRule(

anomaly_type=AnomalyType.WORKER_UNHEALTHY,

severity=AnomalySeverity.CRITICAL,

description="Worker health status is unhealthy",

check_fn=lambda ctx: ctx.status == "unhealthy",

message_template="Worker {worker_name} is unhealthy",

cooldown_seconds=300,

),

AnomalyRule(

anomaly_type=AnomalyType.REPEATED_ERROR,

severity=AnomalySeverity.HIGH,

description="Same error repeated multiple times",

check_fn=lambda ctx: ctx.error_repeat_count > 5,

message_template='Error "{error_message}" repeated {error_repeat_count} times',

cooldown_seconds=900,

),

]

class AnomalyDetector:

def __init__(self):

self._alerts: Dict[str, AnomalyAlert] = {}

self._cooldowns: Dict[str, datetime] = {}

self._error_counts: Dict[str, Dict[str, int]] = {}

self._timeout_counts: Dict[str, int] = {}

self._alert_counter = 0

def check_worker_health(

self,

worker_name: str,

status: str,

jobs_processed: int,

jobs_failed: int,

queue_depth: int,

last_duration_ms: float,

expected_duration_ms: float,

memory_mb: float = 0,

cpu_percent: float = 0,

) -> List[AnomalyAlert]:

detected: List[AnomalyAlert] = []

failure_rate = (jobs_failed / jobs_processed * 100) if jobs_processed > 0 else 0

ctx = RuleContext(

worker_name=worker_name,

status=status,

failure_rate=failure_rate,

queue_depth=queue_depth,

duration_ms=last_duration_ms,

expected_duration_ms=expected_duration_ms,

timeout_count=self._timeout_counts.get(worker_name, 0),

memory_mb=memory_mb,

cpu_percent=cpu_percent,

)

for rule in ANOMALY_RULES:

if self._is_on_cooldown(worker_name, rule.anomaly_type):

continue

if rule.check_fn(ctx):

alert = self._create_alert(worker_name, rule, ctx)

detected.append(alert)

self._set_cooldown(worker_name, rule.anomaly_type, rule.cooldown_seconds)

return detected

def check_job_execution(

self,

worker_name: str,

job_id: str,

duration_ms: float,

expected_duration_ms: float,

success: bool,

error: Optional[str] = None,

) -> List[AnomalyAlert]:

detected: List[AnomalyAlert] = []

if not success and error:

self._track_error(worker_name, error)

# Check slow job

if duration_ms > expected_duration_ms * 2:

if not self._is_on_cooldown(worker_name, AnomalyType.SLOW_JOB):

rule = ANOMALY_RULES[0]

ctx = RuleContext(

worker_name=worker_name,

duration_ms=duration_ms,

expected_duration_ms=expected_duration_ms,

)

alert = self._create_alert(worker_name, rule, ctx)

alert.job_id = job_id

detected.append(alert)

self._set_cooldown(worker_name, AnomalyType.SLOW_JOB, 300)

# Check repeated errors

if error:

error_counts = self._error_counts.get(worker_name, {})

count = error_counts.get(error[:200], 0)

if count > 5 and not self._is_on_cooldown(worker_name, AnomalyType.REPEATED_ERROR):

rule = next(r for r in ANOMALY_RULES if r.anomaly_type == AnomalyType.REPEATED_ERROR)

ctx = RuleContext(

worker_name=worker_name,

error_message=error[:100],

error_repeat_count=count,

)

alert = self._create_alert(worker_name, rule, ctx)

detected.append(alert)

self._set_cooldown(worker_name, AnomalyType.REPEATED_ERROR, 900)

return detected

def resolve_anomaly(self, alert_id: str, resolution: str) -> bool:

alert = self._alerts.get(alert_id)

if not alert or alert.resolved_at:

return False

alert.resolved_at = datetime.now(timezone.utc)

alert.resolution = resolution

return True

def get_active_anomalies(self) -> List[AnomalyAlert]:

severity_order = {"critical": 0, "high": 1, "medium": 2, "low": 3}

return sorted(

[a for a in self._alerts.values() if not a.resolved_at],

key=lambda a: severity_order[a.severity.value]

)

def _track_error(self, worker_name: str, error: str) -> None:

if worker_name not in self._error_counts:

self._error_counts[worker_name] = {}

key = error[:200]

self._error_counts[worker_name][key] = self._error_counts[worker_name].get(key, 0) + 1

def _create_alert(self, worker_name: str, rule: AnomalyRule, ctx: RuleContext) -> AnomalyAlert:

self._alert_counter += 1

alert_id = f"anomaly_{self._alert_counter}_{int(datetime.now().timestamp() * 1000)}"

message = rule.message_template

for key, value in ctx.__dict__.items():

message = message.replace(f"{{{key}}}", str(value))

alert = AnomalyAlert(

id=alert_id,

anomaly_type=rule.anomaly_type,

severity=rule.severity,

worker_name=worker_name,

message=message,

details=ctx.__dict__,

)

self._alerts[alert_id] = alert

return alert

def _is_on_cooldown(self, worker_name: str, anomaly_type: AnomalyType) -> bool:

key = f"{worker_name}:{anomaly_type.value}"

cooldown_end = self._cooldowns.get(key)

return cooldown_end is not None and cooldown_end > datetime.now(timezone.utc)

def _set_cooldown(self, worker_name: str, anomaly_type: AnomalyType, seconds: int) -> None:

from datetime import timedelta

key = f"{worker_name}:{anomaly_type.value}"

self._cooldowns[key] = datetime.now(timezone.utc) + timedelta(seconds=seconds)

# Singleton

_detector: Optional[AnomalyDetector] = None

def get_anomaly_detector() -> AnomalyDetector:

global _detector

if _detector is None:

_detector = AnomalyDetector()

return _detector

```

Usage Examples

Worker Job Monitoring

```typescript

const detector = getAnomalyDetector();

async function executeJob(job: Job) {

const startTime = Date.now();

try {

await processJob(job);

const duration = Date.now() - startTime;

const alerts = detector.checkJobExecution(

'data-processor',

job.id,

duration,

30000, // Expected 30s

true

);

for (const alert of alerts) {

await notifyOps(alert);

}

} catch (error) {

const duration = Date.now() - startTime;

const alerts = detector.checkJobExecution(

'data-processor',

job.id,

duration,

30000,

false,

error.message

);

for (const alert of alerts) {

await notifyOps(alert);

}

throw error;

}

}

```

Periodic Health Checks

```typescript

setInterval(async () => {

const health = await getWorkerHealth('data-processor');

const alerts = detector.checkWorkerHealth('data-processor', health);

for (const alert of alerts) {

if (alert.severity === 'critical') {

await pageOnCall(alert);

} else {

await notifySlack(alert);

}

}

}, 30000);

```

Best Practices

  1. Set cooldowns long enough to prevent alert storms
  2. Use severity levels to route alerts appropriately
  3. Track error patterns to catch repeated failures
  4. Clean up old resolved alerts periodically
  5. Tune thresholds based on your baseline metrics

Common Mistakes

  • Cooldowns too short (alert fatigue)
  • No error pattern tracking (miss repeated failures)
  • Same severity for all alerts (everything becomes noise)
  • Not resolving alerts (dashboard becomes useless)
  • Thresholds too sensitive (false positives)

Related Patterns

  • health-checks - Source of health data for anomaly detection
  • logging-observability - Structured logging for alert context
  • graceful-degradation - Response to detected anomalies

More from this repository10

🎯
feature-flags🎯Skill

Enables controlled feature rollouts, A/B testing, and selective feature access through configurable flags for gradual deployment and user targeting.

🎯
design-tokens🎯Skill

Generates a comprehensive, type-safe design token system with WCAG AA color compliance and multi-framework support for consistent visual design.

🎯
file-uploads🎯Skill

Securely validates, scans, and processes file uploads with multi-stage checks, malware detection, and race condition prevention.

🎯
ai-coaching🎯Skill

Guides users through articulating creative intent by extracting structured parameters and detecting conversation readiness.

🎯
environment-config🎯Skill

Validates and centralizes environment variables with type safety, fail-fast startup checks, and multi-environment support.

🎯
community-feed🎯Skill

Generates efficient social feed with cursor pagination, trending algorithms, and engagement tracking for infinite scroll experiences.

🎯
cloud-storage🎯Skill

Enables secure, multi-tenant cloud file storage with signed URLs, direct uploads, and visibility control for user-uploaded assets.

🎯
email-service🎯Skill

Simplifies email sending, templating, and tracking with robust SMTP integration and support for multiple email providers and transactional workflows.

🎯
error-sanitization🎯Skill

Sanitizes error messages by logging full details server-side while exposing only generic, safe messages to prevent sensitive information leakage.

🎯
batch-processing🎯Skill

Optimizes database operations by collecting and batching independent records, improving throughput by 30-40% with built-in fallback processing.