🎯

fake-driven-testing

🎯Skill

from dagster-io/erk

VibeIndex|
What it does

fake-driven-testing skill from dagster-io/erk

πŸ“¦

Part of

dagster-io/erk(16 items)

fake-driven-testing

Installation

πŸ“‹ No install commands found in docs. Showing default command. Check GitHub for actual instructions.
Quick InstallInstall with npx
npx skills add dagster-io/erk --skill fake-driven-testing
2Installs
67
-
Last UpdatedJan 29, 2026

Skill Details

SKILL.md

Overview

# Fake-Driven Testing Architecture for Python

Use this skill when: Writing tests, fixing bugs, adding features, or modifying gateway layers in Python projects.

Prerequisites: For Python code standards, load the dignified-python-313 skill first. This skill focuses on testing architecture, not Python syntax.

Overview

This skill provides a defense-in-depth testing strategy with five layers for Python applications:

```

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ Layer 5: Business Logic Integration Tests (5%) β”‚ ← Smoke tests over real system

β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€

β”‚ Layer 4: Business Logic Tests (70%) β”‚ ← Tests over fakes (MOST TESTS)

β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€

β”‚ Layer 3: Pure Unit Tests (10%) β”‚ ← Zero dependencies, isolated testing

β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€

β”‚ Layer 2: Integration Sanity Tests (10%)β”‚ ← Fast validation with mocking

β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€

β”‚ Layer 1: Fake Infrastructure Tests (5%)β”‚ ← Verify test doubles work

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

```

Philosophy: Test business logic extensively over fast in-memory fakes. Use real implementations sparingly for integration validation.

Terminology note: The "gateway layer" (also called adapters/providers) refers to thin wrappers around heavyweight external APIs (databases, filesystems, HTTP APIs, message queues, etc.). The pattern matters more than the name.

Quick Decision: What Should I Read?

Adding a feature or fixing a bug?

β†’ Read quick-reference.md first, then workflows.md#adding-a-new-feature

Need to understand where to put a test?

β†’ Read testing-strategy.md

Working with Python-specific patterns?

β†’ Read python-specific.md

Adding/changing a gateway interface?

β†’ Read gateway-architecture.md, then workflows.md#adding-a-gateway-method

Creating a backend (higher-level abstraction over gateways)?

β†’ Read gateway-architecture.md#gateways-vs-backends - backends compose gateways and do NOT have fakes

Need to implement a specific pattern (CliRunner, builders, etc.)?

β†’ Read patterns.md

Not sure if I'm doing it right?

β†’ Read anti-patterns.md

Just need a quick lookup?

β†’ Read quick-reference.md

When to Read Each Reference Document

πŸ“– `gateway-architecture.md`

Read when:

  • Adding or changing gateway/ABC interfaces
  • Understanding the ABC/Real/Fake/DryRun pattern
  • Need examples of gateway implementations
  • Want to understand what gateways are (and why they're thin)
  • Creating a backend (higher-level abstraction that composes gateways)

Contents:

  • What are gateway classes? (naming: gateways/adapters/providers)
  • The four implementations (ABC, Real, Fake, DryRun)
  • Code examples for each
  • When to add/change gateway methods
  • Design principles (keep gateways thin)
  • Common gateway types (Database, API, FileSystem, MessageQueue)
  • Gateways vs Backends - critical distinction for DI boundaries

πŸ“– `testing-strategy.md`

Read when:

  • Deciding where to put a test
  • Understanding the five testing layers
  • Need test distribution guidance (5/70/10/10/5 rule)
  • Want to know which layer tests what

Contents:

  • Layer 1: Unit tests of fakes (verify test infrastructure)
  • Layer 2: Integration sanity tests with mocking (quick validation)
  • Layer 3: Pure unit tests (zero dependencies, isolated testing)
  • Layer 4: Business logic over fakes (majority of tests)
  • Layer 5: Business logic integration tests (smoke tests over real systems)
  • Decision tree: where should my test go?
  • Test distribution examples

πŸ“– `python-specific.md`

Read when:

  • Working with pytest fixtures
  • Need Python mocking patterns
  • Testing Flask/FastAPI/Django applications
  • Understanding Python testing tools
  • Need Python-specific commands

Contents:

  • pytest fixtures and parametrization
  • Mocking with unittest.mock and pytest-mock
  • Testing web frameworks (Flask, FastAPI, Django)
  • Python testing commands
  • Type hints in tests
  • Python packaging for test utilities

πŸ“– `workflows.md`

Read when:

  • Adding a new feature (step-by-step)
  • Fixing a bug (step-by-step)
  • Adding a gateway method (complete checklist)
  • Changing an interface (what to update)
  • Managing dry-run features

Contents:

  • Adding a new feature (TDD workflow)
  • Fixing a bug (reproduce β†’ fix β†’ regression test)
  • Adding a gateway method (8-step checklist with examples)
  • Changing an interface (update all layers)
  • Managing dry-run features (wrapping pattern)
  • Testing with builder patterns

πŸ“– `patterns.md`

Read when:

  • Implementing constructor injection for fakes
  • Adding mutation tracking to fakes
  • Using CliRunner for CLI tests
  • Building complex test scenarios with builders
  • Testing dry-run behavior
  • Need code examples of specific patterns

Contents:

  • Constructor injection (how and why)
  • Mutation tracking properties (read-only access)
  • Using CliRunner (not subprocess)
  • Builder patterns for complex scenarios
  • Simulated environment pattern
  • Error injection pattern
  • Dry-run testing pattern

πŸ“– `anti-patterns.md`

Read when:

  • Unsure if your approach is correct
  • Want to avoid common mistakes
  • Reviewing code for bad patterns
  • Debugging why tests are slow/brittle

Contents:

  • ❌ Testing speculative features
  • ❌ Hardcoded paths in tests (catastrophic)
  • ❌ Not updating all layers
  • ❌ Using subprocess in unit tests
  • ❌ Complex logic in gateway classes
  • ❌ Fakes with I/O operations
  • ❌ Testing implementation details
  • ❌ Incomplete test coverage for gateways

πŸ“– `quick-reference.md`

Read when:

  • Quick lookup for file locations
  • Finding example tests to reference
  • Looking up common fixtures
  • Need command reference
  • Want test distribution guidelines

Contents:

  • Decision tree (where to add test)
  • File location map (source + tests)
  • Common fixtures (tmp_path, CliRunner, etc.)
  • Common test patterns (code snippets)
  • Example tests to reference
  • Useful commands (pytest, ty, etc.)
  • Quick checklist for adding gateway methods

Quick Navigation by Task

I'm adding a new feature

  1. Quick start: quick-reference.md β†’ Decision tree
  2. Step-by-step: workflows.md#adding-a-new-feature
  3. Patterns: patterns.md (CliRunner, builders)
  4. Avoid: anti-patterns.md (speculative tests, hardcoded paths)

I'm fixing a bug

  1. Step-by-step: workflows.md#fixing-a-bug
  2. Patterns: patterns.md#constructor-injection-for-fakes
  3. Examples: quick-reference.md#example-tests-to-reference

I'm adding/changing a gateway method

  1. Understanding: gateway-architecture.md
  2. Step-by-step: workflows.md#adding-a-gateway-method
  3. Checklist: quick-reference.md#quick-checklist-adding-a-new-gateway-method
  4. Avoid: anti-patterns.md#not-updating-all-layers

I don't know where my test should go

  1. Decision tree: quick-reference.md#decision-tree
  2. Detailed guide: testing-strategy.md
  3. Examples: quick-reference.md#example-tests-to-reference

I need to implement a pattern

  1. All patterns: patterns.md
  2. Examples: quick-reference.md#common-test-patterns

I think I'm doing something wrong

  1. Anti-patterns: anti-patterns.md
  2. Correct approach: workflows.md

Visual Layer Guide

```

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ Layer 5: Business Logic Integration Tests (5%) β”‚

β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚

β”‚ β”‚ Real database, filesystem, APIs, actual subprocess β”‚ β”‚

β”‚ β”‚ Purpose: Smoke tests, catch integration issues β”‚ β”‚

β”‚ β”‚ When: Sparingly, for critical workflows β”‚ β”‚

β”‚ β”‚ Speed: Seconds per test β”‚ β”‚

β”‚ β”‚ Location: tests/e2e/ or tests/integration/ β”‚ β”‚

β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ Layer 4: Business Logic Tests (70%) ← MOST TESTS HERE β”‚

β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚

β”‚ β”‚ FakeDatabase, FakeApiClient, FakeFileSystem β”‚ β”‚

β”‚ β”‚ Purpose: Test features and business logic extensively β”‚ β”‚

β”‚ β”‚ When: For EVERY feature and bug fix β”‚ β”‚

β”‚ β”‚ Speed: Milliseconds per test β”‚ β”‚

β”‚ β”‚ Location: tests/unit/, tests/services/, tests/commands/ β”‚ β”‚

β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ Layer 3: Pure Unit Tests (10%) β”‚

β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚

β”‚ β”‚ Zero dependencies, no fakes, no mocks β”‚ β”‚

β”‚ β”‚ Purpose: Test isolated utilities and helpers β”‚ β”‚

β”‚ β”‚ When: For pure functions, data structures, parsers β”‚ β”‚

β”‚ β”‚ Speed: Milliseconds per test β”‚ β”‚

β”‚ β”‚ Location: tests/unit/ β”‚ β”‚

β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ Layer 2: Integration Sanity Tests (10%) β”‚

β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚

β”‚ β”‚ RealDatabase with mocked connections β”‚ β”‚

β”‚ β”‚ Purpose: Quick validation, catch syntax errors β”‚ β”‚

β”‚ β”‚ When: When adding/changing real implementation β”‚ β”‚

β”‚ β”‚ Speed: Fast (mocked) β”‚ β”‚

β”‚ β”‚ Location: tests/integration/test_real_*.py β”‚ β”‚

β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ Layer 1: Fake Infrastructure Tests (5%) β”‚

β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚

β”‚ β”‚ Test FakeDatabase itself β”‚ β”‚

β”‚ β”‚ Purpose: Verify test infrastructure is reliable β”‚ β”‚

β”‚ β”‚ When: When adding/changing fake implementation β”‚ β”‚

β”‚ β”‚ Speed: Milliseconds per test β”‚ β”‚

β”‚ β”‚ Location: tests/unit/fakes/test_fake_*.py β”‚ β”‚

β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

```

Key Principles

  1. Thin gateway layer: Wrap external state, push complexity to business logic
  2. Fast tests over fakes: 70% of tests should use in-memory fakes
  3. Defense in depth: Fakes β†’ sanity tests β†’ pure unit β†’ business logic β†’ integration
  4. Test what you're building: No speculative tests, only active work
  5. Update all layers: When changing interfaces, update ABC/real/fake/dry-run
  6. Gateways vs Backends: Gateways have fakes; backends compose gateways and do NOT have fakes

Layer Selection Guide

Distinguishing Layer 3 (Pure Unit) from Layer 4 (Business Logic):

  • Layer 3 (Pure Unit Tests): ZERO dependencies - no fakes, no mocks, no external state

- Testing string utilities: sanitize_branch_name("feat/FOO") β†’ "feat-foo"

- Testing parsers: parse_git_status("## main") β†’ {"branch": "main"}

- Testing data structures: LinkedList.append() without any external dependencies

  • Layer 4 (Business Logic Tests): Uses fakes for external dependencies

- Testing commands: create_worktree(fake_git, name="feature")

- Testing workflows: submit_pr(fake_gh, fake_git, ...)

- Testing business logic that coordinates multiple integrations

*If your test imports a Fake\, it belongs in Layer 4, not Layer 3.**

Default Testing Strategy

When in doubt:

  • Write test over fakes (Layer 4) for business logic
  • Write pure unit test (Layer 3) for utilities/helpers with no dependencies
  • Use pytest with fixtures
  • Use tmp_path fixture (not hardcoded paths)
  • Follow examples in quick-reference.md

Summary

For quick tasks: Start with quick-reference.md

For understanding: Start with testing-strategy.md or gateway-architecture.md

For step-by-step guidance: Use workflows.md

For implementation details: Use patterns.md

For validation: Check anti-patterns.md

For Python specifics: Check python-specific.md

More from this repository10

🎯
dignified-code-simplifier🎯Skill

dignified-code-simplifier skill from dagster-io/erk

🎯
dignified-python🎯Skill

Enforces Python coding standards with automatic version detection, ensuring clean, modern, and production-tested code across different Python versions.

🎯
learned-docs🎯Skill

learned-docs skill from dagster-io/erk

🎯
gh🎯Skill

Streamlines GitHub workflows by providing CLI-native commands for pull requests, issues, releases, and GitHub API interactions.

🎯
session-inspector🎯Skill

Inspects and analyzes Claude Code session logs to provide insights into project sessions, tool usage, and execution history.

🎯
gt🎯Skill

Navigates and manages stacked pull requests using Graphite's CLI, enabling linear branch workflows and incremental feature development.

🎯
cli-skill-creator🎯Skill

Systematically introspects CLI tools through help text, man pages, and research to create comprehensive, structured skill documentation.

🎯
pr-feedback-classifier🎯Skill

Classifies PR review feedback by actionability and complexity, generating structured JSON for targeted resolution.

🎯
erk-diff-analysis🎯Skill

Generates strategic commit messages by analyzing code diffs, focusing on significant changes and component-level descriptions.

🎯
command-creator🎯Skill

Guides users in creating optimized, reusable slash commands for automating workflows in Claude Code with proper structure and best practices.