integrate-playground
π―Skillfrom dudusoar/vrp-toolkit
Systematically maps Streamlit playground UI to vrp-toolkit backend APIs, providing interface references and contract test integration for efficient module connections.
Installation
npx skills add https://github.com/dudusoar/vrp-toolkit --skill integrate-playgroundSkill Details
Systematic workflow and API reference for integrating Streamlit playground with vrp-toolkit modules. Use when developing playground features, connecting UI to vrp-toolkit APIs, or encountering API signature mismatches. Provides interface mapping table, contract test integration, and troubleshooting guide to avoid token-intensive source code exploration.
Overview
# Integrate Playground with VRP-Toolkit
Token-efficient workflow for connecting Streamlit playground UI to vrp-toolkit backend APIs.
Core Problem
Developing playground features requires knowing exact API signatures of vrp-toolkit modules. Without reference documentation, this requires repeatedly reading source code (consuming thousands of tokens per integration) and leads to API mismatch errors.
Solution
This skill provides:
- Interface Mapping Table - Playground needs β vrp-toolkit APIs
- API Quick Reference - Exact signatures with usage examples
- Contract Test Integration - Automated verification of interfaces
- Common Error Patterns - Troubleshooting guide
Workflow
Step 1: Check Interface Mapping
Before writing any integration code:
- Open [interface_mapping.md](references/interface_mapping.md)
- Find the workflow you're implementing (e.g., "Generate synthetic map")
- Note the exact API signature
- Check for common mistakes marked with β οΈ
Example:
```markdown
Need: Generate synthetic map
API: RealMap(n_r: int, n_c: int, dist_function: Callable, dist_params: Dict)
Common mistake: β Don't use num_customers, use n_c
```
Step 2: Verify with Contract Test (Optional)
If uncertain about API behavior:
- Check if contract test exists in
contracts/directory - Run the test:
pytest contracts/test_.py -v - Read test code to see usage examples
- Test validates: parameters accepted, attributes available, reproducibility
Example:
```bash
pytest contracts/test_realmap_api.py -v
# See test_realmap_initialization() for usage example
```
Step 3: Write Integration Code
Follow the mapping table exactly:
```python
# β Correct: Use exact signature from mapping table
np.random.seed(seed) # For reproducibility
real_map = RealMap(
n_r=num_restaurants,
n_c=num_customers,
dist_function=np.random.uniform,
dist_params={'low': 0, 'high': 100}
)
# β Wrong: Assumed API
real_map = RealMap(
num_customers=num_customers,
num_restaurants=num_restaurants,
area_size=100,
seed=seed
)
```
Data access pattern:
- Most generators create data in
__init__, not via.generate()method - Access via attributes:
.demand_table,.order_table,.time_matrix - See [interface_mapping.md](references/interface_mapping.md) for each API's pattern
Step 4: Add Error Handling
Common error patterns:
```python
try:
instance = PDPTWInstance(
order_table=order_table,
distance_matrix=real_map.distance_matrix,
time_matrix=order_gen.time_matrix,
robot_speed=1.0
)
except TypeError as e:
st.error(f"API mismatch: {e}")
st.info("Check interface_mapping.md for correct parameters")
```
Step 5: Add Contract Test (For New Integrations)
When adding new playground feature:
- Create test in
contracts/test_.py - Test should verify:
- API signature matches mapping table
- Reproducibility (same seed β same result)
- Feasibility (results meet constraints)
- Objective values are consistent
- Add test reference to [interface_mapping.md](references/interface_mapping.md)
Template:
```python
# contracts/test_new_feature.py
def test_api_signature():
"""Verifies API matches interface_mapping.md"""
# Test exact parameters...
def test_reproducibility():
"""Same seed produces same result"""
np.random.seed(42)
result1 = generate_feature()
np.random.seed(42)
result2 = generate_feature()
assert result1 == result2
```
Quick Reference Files
For Complete API Details
See [api_signatures.md](references/api_signatures.md) for:
- Full parameter lists with types
- Return types and attributes
- Usage examples
- Import statements
For Contract Testing
See [contract_tests.md](references/contract_tests.md) for:
- How to write contract tests
- Test organization patterns
- Running and maintaining tests
- Linking tests to mapping table
For Troubleshooting
See [troubleshooting.md](references/troubleshooting.md) for:
- Common error messages and fixes
- Module caching issues (need to restart Streamlit)
- Attribute vs method access patterns
- Missing parameter errors
Anti-Patterns to Avoid
β Don't assume API signatures
- Always check mapping table first
- Don't guess parameter names
β Don't repeatedly read source code
- Use this skill's mapping table (< 1000 tokens)
- Avoid re-reading vrp-toolkit source (several thousand tokens each time)
β Don't call non-existent methods
- Check if it's an attribute or method
- Most generators use attributes:
.demand_table, not.generate()
β Don't skip contract tests for complex integrations
- Tests catch issues early
- Tests document expected behavior
- Tests prevent regressions
Maintenance
When vrp-toolkit API changes:
- Update [interface_mapping.md](references/interface_mapping.md)
- Update affected contract tests in
contracts/ - Run tests to verify:
pytest contracts/ -v - Update playground code
- Update [troubleshooting.md](references/troubleshooting.md) if new error patterns emerge
When adding new playground features:
- Add API to [interface_mapping.md](references/interface_mapping.md)
- Add detailed signature to [api_signatures.md](references/api_signatures.md)
- Create contract test in
contracts/ - Reference test in mapping table
Token Efficiency
Without this skill:
- Read RealMap source: ~1500 tokens
- Read DemandGenerator source: ~1200 tokens
- Read OrderGenerator source: ~1800 tokens
- Read PDPTWInstance source: ~2000 tokens
- Total: ~6500 tokens per integration
With this skill:
- Read interface_mapping.md: ~800 tokens
- Total: ~800 tokens per integration
Savings: ~5700 tokens (87% reduction)
More from this repository10
Extracts and integrates real-world street networks from OpenStreetMap for Vehicle Routing Problem (VRP) modeling and analysis.
Migrates Python research modules from SDR_stochastic to vrp-toolkit, refactoring code into generic, reusable implementations across problem, algorithm, and data layers.
Maintains a comprehensive, up-to-date architecture map documenting system modules, data flows, entry points, and dependencies in ARCHITECTURE_MAP.md.
create-playground skill from dudusoar/vrp-toolkit
Synchronizes TASK_BOARD.md by reading project logs and updating task statuses to reflect actual progress.
Quickly manages Python virtual environments, packages, and dependencies using uv, providing fast and modern project setup commands.
update-migration-log skill from dudusoar/vrp-toolkit
Logs and tracks development issues, debugging processes, and solutions in a structured DEBUG_LOG.md file for systematic problem resolution and knowledge retention.
Manages and maintains VRP Toolkit skills through compliance checks, documentation sync, and change tracking.
Provides comprehensive documentation for data structures in the VRP toolkit, covering problem, algorithm, data, and runtime layers for quick reference.