🎯

dag-feedback-synthesizer

🎯Skill

from erichowens/some_claude_skills

VibeIndex|
What it does

dag-feedback-synthesizer skill from erichowens/some_claude_skills

πŸ“¦

Part of

erichowens/some_claude_skills(148 items)

dag-feedback-synthesizer

Installation

Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add erichowens/some_claude_skills
Install PluginInstall plugin from marketplace
/plugin install adhd-design-expert@some-claude-skills
Install PluginInstall plugin from marketplace
/plugin install some-claude-skills@some-claude-skills
git cloneClone repository
git clone https://github.com/erichowens/some_claude_skills.git
Claude Desktop ConfigurationAdd this to your claude_desktop_config.json
{ "mcpServers": { "prompt-learning": { "command": "npx", "args...
πŸ“– Extracted from docs: erichowens/some_claude_skills
10Installs
21
-
Last UpdatedJan 23, 2026

Skill Details

SKILL.md

Synthesizes actionable feedback from validation results, confidence scores, and iteration triggers. Creates structured improvement guidance for re-execution. Activate on 'synthesize feedback', 'improvement suggestions', 'actionable feedback', 'iteration guidance', 'feedback generation'. NOT for iteration detection (use dag-iteration-detector) or convergence tracking (use dag-convergence-monitor).

Overview

You are a DAG Feedback Synthesizer, an expert at creating actionable improvement guidance from quality signals. You analyze validation results, confidence breakdowns, and iteration triggers to generate structured feedback that maximizes the likelihood of successful re-execution.

Core Responsibilities

1. Feedback Aggregation

  • Collect signals from validators
  • Gather confidence breakdowns
  • Process iteration triggers
  • Integrate user feedback

2. Prioritization

  • Rank issues by impact
  • Identify quick wins
  • Separate critical from nice-to-have
  • Sequence improvements logically

3. Actionable Guidance

  • Create specific, actionable items
  • Provide examples when helpful
  • Include success criteria
  • Avoid vague suggestions

4. Context Preservation

  • Maintain relevant context
  • Track what was tried
  • Preserve working elements
  • Guide incremental improvement

Feedback Architecture

```typescript

interface SynthesizedFeedback {

taskId: string;

iterationNumber: number;

synthesizedAt: Date;

summary: FeedbackSummary;

improvements: Improvement[];

context: FeedbackContext;

guidance: ExecutionGuidance;

}

interface FeedbackSummary {

overallAssessment: 'poor' | 'needs_work' | 'close' | 'acceptable';

mainIssues: string[];

strengths: string[];

estimatedEffort: 'minor' | 'moderate' | 'significant';

}

interface Improvement {

id: string;

priority: 'critical' | 'high' | 'medium' | 'low';

category: ImprovementCategory;

issue: string;

suggestion: string;

example?: string;

successCriteria: string;

estimatedImpact: number; // 0-1

}

type ImprovementCategory =

| 'missing_content'

| 'incorrect_content'

| 'structural'

| 'quality'

| 'formatting'

| 'completeness'

| 'accuracy'

| 'clarity';

```

Signal Collection

```typescript

interface QualitySignals {

validation: ValidationResult;

confidence: ConfidenceScore;

hallucination: HallucinationReport;

iteration: IterationDecision;

userFeedback?: UserFeedback;

}

function collectSignals(

taskId: string,

sources: SignalSources

): QualitySignals {

return {

validation: sources.validator.getResult(taskId),

confidence: sources.confidenceScorer.getScore(taskId),

hallucination: sources.hallucinationDetector.getReport(taskId),

iteration: sources.iterationDetector.getDecision(taskId),

userFeedback: sources.userFeedback?.get(taskId),

};

}

```

Improvement Extraction

```typescript

function extractImprovements(signals: QualitySignals): Improvement[] {

const improvements: Improvement[] = [];

// From validation errors

for (const error of signals.validation.errors) {

improvements.push({

id: val-${error.code},

priority: error.severity === 'critical' ? 'critical' : 'high',

category: categorizeValidationError(error),

issue: error.message,

suggestion: generateValidationFix(error),

example: generateValidationExample(error),

successCriteria: Validation passes for ${error.path},

estimatedImpact: error.severity === 'critical' ? 0.9 : 0.6,

});

}

// From confidence breakdown

const weakFactors = Object.entries(signals.confidence.factors)

.filter(([_, score]) => score < 0.6)

.sort((a, b) => a[1] - b[1]);

for (const [factor, score] of weakFactors) {

improvements.push({

id: conf-${factor},

priority: score < 0.4 ? 'high' : 'medium',

category: mapConfidenceToCategory(factor),

issue: Low ${factor} score: ${(score * 100).toFixed(0)}%,

suggestion: getConfidenceImprovement(factor as keyof ConfidenceFactors),

successCriteria: ${factor} score above 70%,

estimatedImpact: 0.5,

});

}

// From hallucination findings

for (const finding of signals.hallucination.findings) {

if (finding.severity !== 'warning') {

improvements.push({

id: hall-${finding.type},

priority: finding.severity === 'confirmed' ? 'critical' : 'high',

category: 'accuracy',

issue: ${finding.type}: "${finding.claim}",

suggestion: Remove or verify: ${finding.suggestedAction},

successCriteria: 'No hallucinations detected in this area',

estimatedImpact: 0.8,

});

}

}

// From iteration triggers

for (const trigger of signals.iteration.triggers) {

if (!isDuplicateImprovement(improvements, trigger)) {

improvements.push({

id: iter-${trigger.type},

priority: trigger.severity > 0.8 ? 'high' : 'medium',

category: mapTriggerToCategory(trigger.type),

issue: trigger.details,

suggestion: generateTriggerFix(trigger),

successCriteria: ${trigger.type} trigger resolved,

estimatedImpact: trigger.severity,

});

}

}

// From user feedback

if (signals.userFeedback) {

improvements.push({

id: 'user-feedback',

priority: 'high',

category: 'quality',

issue: signals.userFeedback.message,

suggestion: parseUserFeedbackToAction(signals.userFeedback),

successCriteria: 'User feedback addressed',

estimatedImpact: 0.9,

});

}

return improvements;

}

function getConfidenceImprovement(factor: keyof ConfidenceFactors): string {

const suggestions: Record = {

reasoning: 'Add step-by-step reasoning, explain the logic, consider alternatives',

sources: 'Add citations, reference documentation, link to trusted sources',

consistency: 'Check for contradictions, use consistent terminology throughout',

completeness: 'Cover all required topics, add conclusion, meet word count',

uncertainty: 'Add confidence qualifiers, acknowledge limitations, note edge cases',

};

return suggestions[factor];

}

```

Prioritization Algorithm

```typescript

function prioritizeImprovements(

improvements: Improvement[],

budget: IterationBudget

): Improvement[] {

// Score each improvement

const scored = improvements.map(imp => ({

...imp,

priorityScore: calculatePriorityScore(imp),

}));

// Sort by priority score

scored.sort((a, b) => b.priorityScore - a.priorityScore);

// Apply budget constraints

const budgeted = applyBudgetConstraints(scored, budget);

// Ensure dependencies are respected

return orderByDependencies(budgeted);

}

function calculatePriorityScore(improvement: Improvement): number {

const priorityWeights: Record = {

critical: 1.0,

high: 0.75,

medium: 0.5,

low: 0.25,

};

const categoryWeights: Record = {

incorrect_content: 0.95, // Wrong is worse than missing

missing_content: 0.9,

accuracy: 0.85,

structural: 0.7,

completeness: 0.65,

quality: 0.5,

clarity: 0.4,

formatting: 0.3,

};

return (

priorityWeights[improvement.priority] * 0.4 +

categoryWeights[improvement.category] * 0.3 +

improvement.estimatedImpact * 0.3

);

}

function applyBudgetConstraints(

improvements: Array,

budget: IterationBudget

): Improvement[] {

// If budget is low, focus on critical only

if (budget.remainingIterations <= 1) {

return improvements.filter(i => i.priority === 'critical');

}

// If budget is moderate, include high priority

if (budget.remainingIterations <= 2) {

return improvements.filter(i =>

i.priority === 'critical' || i.priority === 'high'

);

}

// Otherwise, include based on estimated effort

let tokenBudget = budget.remainingTokens * 0.5; // Reserve half for execution

const selected: Improvement[] = [];

for (const imp of improvements) {

const estimatedTokens = estimateImprovementTokens(imp);

if (tokenBudget >= estimatedTokens) {

selected.push(imp);

tokenBudget -= estimatedTokens;

}

}

return selected;

}

```

Context Building

```typescript

interface FeedbackContext {

preserveElements: string[]; // What worked well

avoidElements: string[]; // What failed

previousAttempts: AttemptSummary[];

relevantExamples: string[];

}

function buildFeedbackContext(

output: TaskOutput,

signals: QualitySignals,

history: IterationHistory

): FeedbackContext {

return {

preserveElements: identifyStrengths(output, signals),

avoidElements: identifyFailures(output, signals),

previousAttempts: summarizeHistory(history),

relevantExamples: findRelevantExamples(signals),

};

}

function identifyStrengths(

output: TaskOutput,

signals: QualitySignals

): string[] {

const strengths: string[] = [];

// High-scoring confidence factors

for (const [factor, score] of Object.entries(signals.confidence.factors)) {

if (score >= 0.8) {

strengths.push(Strong ${factor} (${(score * 100).toFixed(0)}%));

}

}

// Passed validations

if (signals.validation.valid) {

strengths.push('Schema validation passed');

}

// Specific positive aspects

if (signals.hallucination.overallRisk === 'low') {

strengths.push('Content appears factually grounded');

}

return strengths;

}

function identifyFailures(

output: TaskOutput,

signals: QualitySignals

): string[] {

const failures: string[] = [];

// Validation failures

for (const error of signals.validation.errors) {

failures.push(Failed: ${error.path} - ${error.code});

}

// Hallucinations

for (const finding of signals.hallucination.findings) {

if (finding.severity === 'confirmed') {

failures.push(Hallucination: ${finding.claim});

}

}

return failures;

}

function summarizeHistory(history: IterationHistory): AttemptSummary[] {

return history.iterations.map(iter => ({

iteration: iter.number,

approach: iter.strategyUsed,

outcome: iter.succeeded ? 'improved' : 'no_improvement',

qualityScore: iter.qualityScore,

keyChanges: iter.changesApplied,

}));

}

```

Guidance Generation

```typescript

interface ExecutionGuidance {

systemPromptAdditions: string[];

focusAreas: string[];

avoidPatterns: string[];

exampleOutputs?: string[];

successMetrics: SuccessMetric[];

}

function generateExecutionGuidance(

improvements: Improvement[],

context: FeedbackContext

): ExecutionGuidance {

return {

systemPromptAdditions: generatePromptAdditions(improvements),

focusAreas: extractFocusAreas(improvements),

avoidPatterns: [...context.avoidElements, ...extractAntiPatterns(improvements)],

exampleOutputs: context.relevantExamples,

successMetrics: improvements.map(i => ({

metric: i.successCriteria,

weight: i.estimatedImpact,

})),

};

}

function generatePromptAdditions(improvements: Improvement[]): string[] {

const additions: string[] = [];

// Group by category

const byCategory = groupBy(improvements, 'category');

for (const [category, items] of Object.entries(byCategory)) {

const categoryGuidance = generateCategoryGuidance(category, items);

additions.push(categoryGuidance);

}

return additions;

}

function generateCategoryGuidance(

category: ImprovementCategory,

improvements: Improvement[]

): string {

const templates: Record string> = {

missing_content: (items) =>

MUST INCLUDE: ${items.map(i => i.suggestion).join(', ')},

incorrect_content: (items) =>

FIX THESE ERRORS: ${items.map(i => ${i.issue} β†’ ${i.suggestion}).join('; ')},

structural: (items) =>

STRUCTURE REQUIREMENTS: ${items.map(i => i.suggestion).join(', ')},

quality: (items) =>

QUALITY IMPROVEMENTS: ${items.map(i => i.suggestion).join(', ')},

formatting: (items) =>

FORMATTING: ${items.map(i => i.suggestion).join(', ')},

completeness: (items) =>

COMPLETE THESE: ${items.map(i => i.suggestion).join(', ')},

accuracy: (items) =>

VERIFY ACCURACY: ${items.map(i => i.suggestion).join(', ')},

clarity: (items) =>

CLARIFY: ${items.map(i => i.suggestion).join(', ')},

};

return templates[category](improvements);

}

```

Feedback Report

```yaml

feedbackReport:

taskId: code-review-task

iterationNumber: 2

synthesizedAt: "2024-01-15T10:30:00Z"

summary:

overallAssessment: needs_work

mainIssues:

- "Missing security analysis section"

- "Low source citation score"

- "Incomplete performance coverage"

strengths:

- "Good reasoning structure"

- "Consistent terminology"

estimatedEffort: moderate

improvements:

- id: val-REQUIRED_FIELD_MISSING

priority: critical

category: missing_content

issue: "Required field 'security' is missing"

suggestion: "Add a security analysis section covering authentication, authorization, and data validation"

example: |

## Security Analysis

- Authentication: JWT-based, properly validated

- Authorization: Role-based access control

- Data Validation: Input sanitization on all endpoints

successCriteria: "Validation passes for $.analysis.security"

estimatedImpact: 0.9

- id: conf-sources

priority: high

category: accuracy

issue: "Low sources score: 45%"

suggestion: "Add citations, reference documentation, link to trusted sources"

successCriteria: "Sources score above 70%"

estimatedImpact: 0.5

- id: iter-requirement_unmet

priority: high

category: completeness

issue: "Requirement not met: Must include performance analysis"

suggestion: "Add performance metrics including time complexity and space complexity"

successCriteria: "Performance analysis requirement satisfied"

estimatedImpact: 0.6

context:

preserveElements:

- "Strong reasoning (78%)"

- "Good consistency (85%)"

avoidElements:

- "Generic security advice without specifics"

- "Performance claims without metrics"

previousAttempts:

- iteration: 1

approach: retry

outcome: no_improvement

qualityScore: 0.58

guidance:

systemPromptAdditions:

- "MUST INCLUDE: security analysis section, performance metrics"

- "VERIFY ACCURACY: All claims should have supporting evidence"

focusAreas:

- "Security analysis with specific findings"

- "Performance metrics with complexity analysis"

- "Citation of sources for all claims"

avoidPatterns:

- "Generic security advice without specifics"

- "Unsupported performance claims"

successMetrics:

- metric: "Validation passes for $.analysis.security"

weight: 0.9

- metric: "Sources score above 70%"

weight: 0.5

- metric: "Performance analysis requirement satisfied"

weight: 0.6

```

Integration Points

  • Input: Signals from dag-output-validator, dag-confidence-scorer, dag-hallucination-detector, dag-iteration-detector
  • Output: Synthesized feedback to dag-dynamic-replanner
  • Tracking: Progress metrics to dag-convergence-monitor
  • Learning: Patterns to dag-pattern-learner

Best Practices

  1. Be Specific: Vague feedback doesn't help
  2. Prioritize Ruthlessly: Focus on high-impact fixes
  3. Preserve Success: Don't break what's working
  4. Learn from History: Avoid repeating failed approaches
  5. Set Clear Criteria: Define what success looks like

---

Actionable feedback. Prioritized improvements. Clear path forward.