agent-builder-vercel-sdk
π―Skillfrom fernandofuc/nextjs-claude-setup
agent-builder-vercel-sdk skill from fernandofuc/nextjs-claude-setup
Installation
npx skills add https://github.com/fernandofuc/nextjs-claude-setup --skill agent-builder-vercel-sdkSkill Details
Build conversational AI agents using Vercel AI SDK + OpenRouter. Use when creating Next.js frontends with streaming UI, tool calling, and multi-provider support.
Overview
# Vercel AI SDK Agent Builder
Purpose
Create streaming AI chat interfaces with minimal code using Vercel AI SDK and OpenRouter provider.
When to Use
- Building Next.js frontend with chat UI
- Need streaming responses with SSE
- Want type-safe tool calling in TypeScript
- Switching between multiple AI providers
- Building agentic loops with stopWhen/prepareStep
Quick Start
Installation
```bash
npm install ai @openrouter/ai-sdk-provider zod
```
Environment Variables
```env
OPENROUTER_API_KEY=sk-or-v1-...
NEXT_PUBLIC_SITE_URL=http://localhost:3000
```
Backend Setup (Route Handler)
Basic Chat Endpoint
```typescript
// app/api/chat/route.ts
import { OpenRouter } from '@openrouter/ai-sdk-provider'
import { streamText } from 'ai'
const openrouter = new OpenRouter({
apiKey: process.env.OPENROUTER_API_KEY
})
export async function POST(req: Request) {
const { messages } = await req.json()
const result = streamText({
model: openrouter('openai/gpt-4o'),
system: 'You are a helpful assistant',
messages,
})
return result.toDataStreamResponse()
}
```
With Tool Calling
```typescript
import { z } from 'zod'
import { tool } from 'ai'
const tools = {
generateImage: tool({
description: 'Generate images using AI',
parameters: z.object({
prompt: z.string().describe('Image description'),
numImages: z.number().min(1).max(10).default(1)
}),
execute: async ({ prompt, numImages }) => {
// Your implementation
const images = await generateImages(prompt, numImages)
return { images }
}
})
}
export async function POST(req: Request) {
const { messages } = await req.json()
const result = streamText({
model: openrouter('openai/gpt-4o'),
system: 'You are a helpful assistant',
messages,
tools,
maxSteps: 5 // Enable agentic loop
})
return result.toDataStreamResponse()
}
```
Frontend Integration
Using useChat Hook
```typescript
'use client'
import { useChat } from 'ai/react'
export default function Chat() {
const { messages, input, handleInputChange, handleSubmit, isLoading } = useChat()
return (
{/ Messages /} {messages.map(m => ( {m.content} ))} {/ Input /} value={input} onChange={handleInputChange} placeholder="Type a message..." disabled={isLoading} className="w-full px-4 py-2 border rounded" />
)
}
```
With Tool Results Display
```typescript
'use client'
import { useChat } from 'ai/react'
export default function ChatWithTools() {
const { messages, input, handleInputChange, handleSubmit } = useChat()
return (
{messages.map(m => ( {m.content} {/ Display tool calls /} {m.toolInvocations?.map(tool => ( {tool.toolName} {tool.state === 'result' && ( )} ))} ))} {JSON.stringify(tool.result, null, 2)}
)
}
```
Advanced Patterns
Multi-Step Agentic Loop
```typescript
const result = streamText({
model: openrouter('openai/gpt-4o'),
messages,
tools,
maxSteps: 5,
// Control loop behavior
onStepFinish: ({ stepType, text, toolCalls }) => {
console.log(Step finished: ${stepType})
},
// Stop condition
experimental_continueSteps: true
})
```
Custom Streaming with streamUI
```typescript
import { streamUI } from 'ai/rsc'
export async function generateUI(prompt: string) {
const result = streamUI({
model: openrouter('openai/gpt-4o'),
prompt,
text: ({ content }) => {content}
tools: {
showImage: {
description: 'Display an image',
parameters: z.object({ url: z.string() }),
generate: async ({ url }) =>
}
}
})
return result.value
}
```
tldraw Agent Pattern
Based on: /Users/danielcarreon/Documents/AI/software/tldraw-agent/
```typescript
// Incremental JSON parsing pattern
async function* streamActions(model, prompt) {
const { textStream } = streamText({
model,
system: systemPrompt,
messages,
maxOutputTokens: 8192,
temperature: 0
})
let buffer = '{"actions": [{"_type":'
for await (const text of textStream) {
buffer += text
// Parse incremental JSON
const partialObject = closeAndParseJson(buffer)
if (!partialObject) continue
const actions = partialObject.actions
if (!Array.isArray(actions)) continue
// Yield actions as they complete
for (const action of actions) {
if (action.complete) {
yield action
}
}
}
}
```
OpenRouter Provider Setup
```typescript
import { OpenRouter } from '@openrouter/ai-sdk-provider'
const openrouter = new OpenRouter({
apiKey: process.env.OPENROUTER_API_KEY,
// Optional: customize
baseURL: 'https://openrouter.ai/api/v1',
headers: {
'HTTP-Referer': process.env.NEXT_PUBLIC_SITE_URL,
'X-Title': 'My App'
}
})
// Use different models
const gpt4 = openrouter('openai/gpt-4o')
const claude = openrouter('anthropic/claude-3-5-sonnet')
const gemini = openrouter('google/gemini-2.0-flash-exp')
```
Error Handling
```typescript
export async function POST(req: Request) {
try {
const { messages } = await req.json()
const result = streamText({
model: openrouter('openai/gpt-4o'),
messages,
onError: (error) => {
console.error('Stream error:', error)
}
})
return result.toDataStreamResponse()
} catch (error) {
return new Response(
JSON.stringify({ error: error.message }),
{ status: 500 }
)
}
}
```
Testing
```typescript
import { streamText } from 'ai'
import { OpenRouter } from '@openrouter/ai-sdk-provider'
describe('Chat API', () => {
it('should stream response', async () => {
const openrouter = new OpenRouter({
apiKey: process.env.OPENROUTER_API_KEY
})
const result = streamText({
model: openrouter('openai/gpt-4o'),
prompt: 'Say hello'
})
const chunks = []
for await (const chunk of result.textStream) {
chunks.push(chunk)
}
expect(chunks.length).toBeGreaterThan(0)
})
})
```
Best Practices
- Type Safety: Use Zod for tool parameters
- Error Boundaries: Wrap chat UI in ErrorBoundary
- Loading States: Show loading UI during streaming
- Optimistic Updates: Update UI before server response
- Tool Results: Display tool executions to user
- Rate Limiting: Implement rate limits on API routes
- Context Management: Limit message history to avoid token overflow
Common Patterns
Image Generation Agent
```typescript
const tools = {
generateAvatar: tool({
description: 'Generate avatar with DANI identity',
parameters: z.object({
prompt: z.string(),
numImages: z.number().default(3)
}),
execute: async ({ prompt, numImages }) => {
const response = await fetch('/api/generate', {
method: 'POST',
body: JSON.stringify({ prompt, numImages })
})
return await response.json()
}
}),
combineImages: tool({
description: 'Combine multiple images',
parameters: z.object({
imageUrls: z.array(z.string()),
prompt: z.string()
}),
execute: async ({ imageUrls, prompt }) => {
// Nano Banana integration
return await combineWithNanoBanana(imageUrls, prompt)
}
})
}
```
Resources
- [Vercel AI SDK Docs](https://sdk.vercel.ai)
- [OpenRouter Provider](https://github.com/OpenRouterTeam/ai-sdk-provider)
- [Tool Calling Guide](https://sdk.vercel.ai/docs/ai-sdk-core/tools-and-tool-calling)
More from this repository2
Guides developers through Next.js 16's features, migration strategies, and performance optimizations with comprehensive, practical examples and configuration insights.
Enables seamless user authentication and persistent conversation memory for AI applications using Supabase PostgreSQL backend.