hubspot-crm
π―Skillfrom funnelenvy/agents_webinar_demos
Syncs contacts and lists to HubSpot CRM using a private API token, enabling seamless data integration and management.
Installation
npx skills add https://github.com/funnelenvy/agents_webinar_demos --skill hubspot-crmSkill Details
Use when syncing contacts or lists to HubSpot CRM. Automatically uses HUBSPOT_API_TOKEN from environment.
Overview
# HubSpot CRM Integration
Sync contacts and lists to HubSpot using the REST API.
Environment Variables
```bash
HUBSPOT_API_TOKEN="pat-na1-..." # Private App token from HubSpot
```
Quick Start
```python
import os
import json
from urllib.request import Request, urlopen
from urllib.error import HTTPError
class HubSpotClient:
"""Simple HubSpot API client."""
def __init__(self):
self.token = os.environ.get('HUBSPOT_API_TOKEN')
if not self.token:
raise ValueError("HUBSPOT_API_TOKEN environment variable not set")
self.base_url = "https://api.hubapi.com"
def _request(self, method: str, endpoint: str, data: dict = None) -> dict:
url = f"{self.base_url}{endpoint}"
headers = {
"Authorization": f"Bearer {self.token}",
"Content-Type": "application/json"
}
body = json.dumps(data).encode('utf-8') if data else None
request = Request(url, data=body, headers=headers, method=method)
with urlopen(request, timeout=30) as response:
return json.loads(response.read().decode('utf-8'))
```
Create Static List
```python
def create_static_list(client, name: str) -> str:
"""Create a static list for contacts. Returns list ID."""
payload = {
"name": name,
"objectTypeId": "0-1", # REQUIRED: 0-1 = contacts
"processingType": "MANUAL"
}
result = client._request("POST", "/crm/v3/lists", payload)
# Response is nested: {"list": {"listId": "..."}}
list_data = result.get("list", result)
list_id = list_data.get("listId")
print(f"β Created list: {name} (ID: {list_id})")
return list_id
```
Search Contact by Email
```python
def search_contact(client, email: str) -> str | None:
"""Find contact by email. Returns contact ID or None."""
payload = {
"filterGroups": [{
"filters": [{
"propertyName": "email",
"operator": "EQ",
"value": email
}]
}],
"properties": ["email"],
"limit": 1
}
result = client._request("POST", "/crm/v3/objects/contacts/search", payload)
results = result.get("results", [])
return results[0]["id"] if results else None
```
Create Contact
```python
def create_contact(client, email: str, firstname: str = None, lastname: str = None) -> str:
"""Create a new contact with email only (vanilla upload).
Only uses standard HubSpot properties (email, firstname, lastname)
to avoid errors from missing custom properties in the target account.
"""
properties = {"email": email}
if firstname:
properties["firstname"] = firstname
if lastname:
properties["lastname"] = lastname
result = client._request("POST", "/crm/v3/objects/contacts", {"properties": properties})
return result["id"]
```
Important: Do NOT pass arbitrary CSV columns as properties. HubSpot will reject
any property names that don't exist in the target account. Only use standard fields
(email, firstname, lastname) unless you've confirmed custom properties exist.
Add Contacts to List
```python
def add_to_list(client, list_id: str, contact_ids: list[str]):
"""Add contacts to a static list. Batches in groups of 100."""
endpoint = f"/crm/v3/lists/{list_id}/memberships/add"
batch_size = 100
total_added = 0
for i in range(0, len(contact_ids), batch_size):
batch = contact_ids[i:i + batch_size]
# IMPORTANT: Payload is a simple array, NOT {"recordIdsToAdd": [...]}
result = client._request("PUT", endpoint, batch)
added = len(result.get("recordsIdsAdded", []))
total_added += added
print(f" Added batch: {added} contacts")
print(f"β Added {total_added} total contacts to list")
```
Full Upload Flow
```python
def upload_users_to_hubspot(emails: list[str], list_name: str) -> str:
"""Upload a list of email addresses to HubSpot."""
client = HubSpotClient()
# Create list
list_id = create_static_list(client, list_name)
# Find or create contacts
contact_ids = []
for email in emails:
contact_id = search_contact(client, email)
if not contact_id:
contact_id = create_contact(client, email)
contact_ids.append(contact_id)
# Add to list
add_to_list(client, list_id, contact_ids)
print(f"\nβ Complete!")
print(f" List: https://app.hubspot.com/contacts/lists/{list_id}")
return list_id
```
Usage Example
```python
# Upload at-risk users from analysis
at_risk_emails = [
"user_001@demo.reformapp.com",
"user_002@demo.reformapp.com",
"user_003@demo.reformapp.com"
]
list_id = upload_users_to_hubspot(
emails=at_risk_emails,
list_name="At-Risk Trial Users - Dec 2024"
)
```
Using the Integration Script
For CSV files, use the provided script:
```bash
.venv/bin/python demos/04-trial-to-paid/scripts/hubspot_integration.py \
path/to/users.csv \
"List Name Here"
```
The CSV must have an email column.
API Gotchas
- List creation requires
objectTypeId: Always include"objectTypeId": "0-1"for contacts - Response is nested: List ID is at
result["list"]["listId"], notresult["listId"] - Add-to-list payload format: Use simple array
["id1", "id2"], NOT{"recordIdsToAdd": [...]} - Contact IDs are strings: Even though they look numeric, treat them as strings
- Batch limit: Add contacts in batches of 100 max
Error Handling
```python
from urllib.error import HTTPError
try:
result = client._request("POST", endpoint, payload)
except HTTPError as e:
error_body = e.read().decode('utf-8')
print(f"HubSpot API error: {e.code}")
print(f" {error_body}")
```
Getting Your HubSpot Private App Token
- Go to Settings (gear icon) in HubSpot
- Navigate to Integrations > Private Apps
- Click Create a private app
- Give it a name (e.g., "AI Agent Integration")
- Under Scopes, enable:
- crm.lists.read
- crm.lists.write
- crm.objects.contacts.read
- crm.objects.contacts.write
- Click Create app and copy the token
- Set as
HUBSPOT_API_TOKENenvironment variable
More from this repository9
gcp-bq-data-loading skill from funnelenvy/agents_webinar_demos
gcp-cli-gotchas skill from funnelenvy/agents_webinar_demos
Generates precise CSV export formats for Google Ads Enhanced Conversions, Customer Match, and Meta Custom Audiences with specific data schema requirements.
Queries code and files using Google Gemini CLI, providing AI-powered insights, explanations, and analysis for codebases.
Automates browser interactions using Playwright Python, enabling web scraping, screenshot capture, and dynamic page testing with precise element selection.
Queries and analyzes code using OpenAI Codex CLI, providing read-only codebase exploration and technical insights.
Automates BigQuery table operations like creation, schema updates, data loading, and management across Google Cloud Platform projects
Automates anomaly detection workflows by connecting data sources, triggering alerts in Slack, and orchestrating multi-step notification processes using N8N workflow automation.
Exports BigQuery data to Cloud Storage in various formats like CSV, JSON, Avro, and Parquet with flexible compression and export options.