๐ŸŽฏ

meta-cognition-parallel

๐ŸŽฏSkill

from goooice/rust-skills

VibeIndex|
What it does

Performs parallel three-layer meta-cognitive analysis by forking subagents to simultaneously analyze language mechanics, design choices, and domain constraints, then synthesizing results.

๐Ÿ“ฆ

Part of

goooice/rust-skills(35 items)

meta-cognition-parallel

Installation

Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add ZhangHanDong/rust-skills
Install PluginInstall plugin from marketplace
/plugin install rust-skills@rust-skills
Quick InstallInstall with npx
npx skills add ZhangHanDong/rust-skills
git cloneClone repository
git clone https://github.com/ZhangHanDong/rust-skills.git
๐Ÿ“– Extracted from docs: goooice/rust-skills
4Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

"EXPERIMENTAL: Three-layer parallel meta-cognition analysis. Triggers on: /meta-parallel, ไธ‰ๅฑ‚ๅˆ†ๆž, parallel analysis, ๅนถ่กŒๅ…ƒ่ฎค็Ÿฅ"

Overview

# Meta-Cognition Parallel Analysis (Experimental)

> Status: Experimental | Version: 0.1.0

>

> This skill tests parallel three-layer cognitive analysis using context: fork.

Concept

Instead of sequential analysis, this skill launches three parallel subagents - one for each cognitive layer - then synthesizes their results.

```

User Question

โ”‚

โ–ผ

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”

โ”‚ meta-cognition-parallel โ”‚

โ”‚ (Coordinator) โ”‚

โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

โ”‚

โ”œโ”€โ”€โ”€ Task(fork) โ”€โ”€โ–บ layer1-analyzer โ”€โ”€โ–บ L1 Result

โ”‚ (Language Mechanics)

โ”‚

โ”œโ”€โ”€โ”€ Task(fork) โ”€โ”€โ–บ layer2-analyzer โ”€โ”€โ–บ L2 Result

โ”‚ (Design Choices) โ”œโ”€โ”€ Parallel

โ”‚ โ”‚

โ””โ”€โ”€โ”€ Task(fork) โ”€โ”€โ–บ layer3-analyzer โ”€โ”€โ–บ L3 Result

(Domain Constraints)

โ”‚

โ–ผ

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”

โ”‚ Cross-Layer Synthesis โ”‚

โ”‚ (In main context with all results) โ”‚

โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

โ”‚

โ–ผ

Domain-Correct Architectural Solution

```

Usage

```

/meta-parallel

```

Example:

```

/meta-parallel ๆˆ‘็š„ไบคๆ˜“็ณป็ปŸๆŠฅ E0382 ้”™่ฏฏ๏ผŒๅบ”่ฏฅ็”จ clone ๅ—๏ผŸ

```

Execution Instructions

Step 1: Parse User Query

Extract from $ARGUMENTS:

  • The original question
  • Any code snippets
  • Domain hints (trading, web, embedded, etc.)

Step 2: Launch Three Parallel Agents

CRITICAL: Launch all three Tasks in a SINGLE message to enable parallel execution.

```

Read agent files, then launch in parallel:

Task(

subagent_type: "general-purpose",

run_in_background: true,

prompt:

+ "\n\n## User Query\n" + $ARGUMENTS

)

Task(

subagent_type: "general-purpose",

run_in_background: true,

prompt:

+ "\n\n## User Query\n" + $ARGUMENTS

)

Task(

subagent_type: "general-purpose",

run_in_background: true,

prompt:

+ "\n\n## User Query\n" + $ARGUMENTS

)

```

Step 3: Collect Results

Wait for all three agents to complete. Each returns structured analysis.

Step 4: Cross-Layer Synthesis

With all three results, perform synthesis:

```markdown

Cross-Layer Synthesis

Layer Results Summary

| Layer | Key Finding | Confidence |

|-------|-------------|------------|

| L1 (Mechanics) | [Summary] | [Level] |

| L2 (Design) | [Summary] | [Level] |

| L3 (Domain) | [Summary] | [Level] |

Cross-Layer Reasoning

  1. L3 โ†’ L2: [How domain constraints affect design choice]
  2. L2 โ†’ L1: [How design choice determines mechanism]
  3. L1 โ† L3: [Direct domain impact on language features]

Synthesized Recommendation

Problem: [Restated with full context]

Solution: [Domain-correct architectural solution]

Rationale:

  • Domain requires: [L3 constraint]
  • Design pattern: [L2 pattern]
  • Mechanism: [L1 implementation]

Confidence Assessment

  • Overall: HIGH | MEDIUM | LOW
  • Limiting Factor: [Which layer had lowest confidence]

```

Output Template

```markdown

# Three-Layer Meta-Cognition Analysis

> Query: [User's question]

---

Layer 1: Language Mechanics

[L1 agent result]

---

Layer 2: Design Choices

[L2 agent result]

---

Layer 3: Domain Constraints

[L3 agent result]

---

Cross-Layer Synthesis

Reasoning Chain

```

L3 Domain: [Constraint]

โ†“ implies

L2 Design: [Pattern]

โ†“ implemented via

L1 Mechanism: [Feature]

```

Final Recommendation

Do: [Recommended approach]

Don't: [What to avoid]

Code Pattern:

```rust

// Recommended implementation

```

---

Analysis performed by meta-cognition-parallel v0.1.0 (experimental)

```

Test Scenarios

Test 1: Trading System E0382

```

/meta-parallel ไบคๆ˜“็ณป็ปŸๆŠฅ E0382๏ผŒtrade record ่ขซ move ไบ†

```

Expected: L3 identifies FinTech constraints โ†’ L2 suggests shared immutable โ†’ L1 recommends Arc

Test 2: Web API Concurrency

```

/meta-parallel Web API ไธญๅคšไธช handler ้œ€่ฆๅ…ฑไบซๆ•ฐๆฎๅบ“่ฟžๆŽฅๆฑ 

```

Expected: L3 identifies Web constraints โ†’ L2 suggests connection pooling โ†’ L1 recommends Arc

Test 3: CLI Tool Config

```

/meta-parallel CLI ๅทฅๅ…ทๅฆ‚ไฝ•ๅค„็†้…็ฝฎๆ–‡ไปถๅ’Œๅ‘ฝไปค่กŒๅ‚ๆ•ฐ็š„ไผ˜ๅ…ˆ็บง

```

Expected: L3 identifies CLI constraints โ†’ L2 suggests config precedence pattern โ†’ L1 recommends builder pattern

Limitations (Experimental)

  • Subagent results are summarized, may lose detail
  • Parallel execution depends on Claude Code version
  • Cross-layer synthesis quality depends on result structure
  • May have higher latency than sequential approach

Feedback

This is experimental. Please report issues and suggestions to improve the three-layer parallel analysis approach.

More from this repository10

๐ŸŽฏ
m14-mental-model๐ŸŽฏSkill

Applies the M14 mental model framework to enhance decision-making and strategic thinking through structured cognitive analysis.

๐ŸŽฏ
m04-zero-cost๐ŸŽฏSkill

Guides developers in choosing zero-cost abstractions by analyzing type system constraints and performance trade-offs in Rust generics and traits.

๐ŸŽฏ
m10-performance๐ŸŽฏSkill

Optimizes code performance by identifying bottlenecks, measuring impact, and guiding strategic improvements across algorithm, data structure, and memory efficiency.

๐ŸŽฏ
unsafe-checker๐ŸŽฏSkill

Identifies and reviews unsafe Rust code patterns, FFI risks, and potential memory unsafety in Rust projects.

๐ŸŽฏ
rust-skill-creator๐ŸŽฏSkill

Dynamically generates Claude skills for Rust crates, standard library modules, and documentation by extracting and processing technical details from specified URLs.

๐ŸŽฏ
coding-guidelines๐ŸŽฏSkill

Provides comprehensive Rust coding guidelines covering naming conventions, best practices, error handling, memory management, concurrency, and code style recommendations.

๐ŸŽฏ
rust-refactor-helper๐ŸŽฏSkill

Performs safe Rust refactoring by analyzing symbol references, checking conflicts, and applying changes across project files using LSP.

๐ŸŽฏ
m03-mutability๐ŸŽฏSkill

Diagnoses and guides resolution of Rust mutability and borrowing conflicts by analyzing ownership, mutation patterns, and thread-safety requirements.

๐ŸŽฏ
domain-iot๐ŸŽฏSkill

Enables building robust, efficient IoT applications with offline-first design, power-aware networking, and secure device communication using Rust.

๐ŸŽฏ
m05-type-driven๐ŸŽฏSkill

Explores and demonstrates type-driven development techniques in Rust, showcasing advanced type system features and pattern matching strategies.