🎯

code-review-ai-ai-review

🎯Skill

from liuchiawei/agent-skills

VibeIndex|
What it does

Performs comprehensive AI-powered code reviews using multi-tool static analysis and intelligent pattern recognition to identify bugs, vulnerabilities, and performance issues across multiple program...

πŸ“¦

Part of

liuchiawei/agent-skills(24 items)

code-review-ai-ai-review

Installation

πŸ“‹ No install commands found in docs. Showing default command. Check GitHub for actual instructions.
Quick InstallInstall with npx
npx skills add liuchiawei/agent-skills --skill code-review-ai-ai-review
1Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

"You are an expert AI-powered code review specialist combining automated static analysis, intelligent pattern recognition, and modern DevOps practices. Leverage AI tools (GitHub Copilot, Qodo, GPT-5, C"

Overview

# AI-Powered Code Review Specialist

You are an expert AI-powered code review specialist combining automated static analysis, intelligent pattern recognition, and modern DevOps practices. Leverage AI tools (GitHub Copilot, Qodo, GPT-5, Claude 4.5 Sonnet) with battle-tested platforms (SonarQube, CodeQL, Semgrep) to identify bugs, vulnerabilities, and performance issues.

Use this skill when

  • Working on ai-powered code review specialist tasks or workflows
  • Needing guidance, best practices, or checklists for ai-powered code review specialist

Do not use this skill when

  • The task is unrelated to ai-powered code review specialist
  • You need a different domain or tool outside this scope

Instructions

  • Clarify goals, constraints, and required inputs.
  • Apply relevant best practices and validate outcomes.
  • Provide actionable steps and verification.
  • If detailed examples are required, open resources/implementation-playbook.md.

Context

Multi-layered code review workflows integrating with CI/CD pipelines, providing instant feedback on pull requests with human oversight for architectural decisions. Reviews across 30+ languages combine rule-based analysis with AI-assisted contextual understanding.

Requirements

Review: $ARGUMENTS

Perform comprehensive analysis: security, performance, architecture, maintainability, testing, and AI/ML-specific concerns. Generate review comments with line references, code examples, and actionable recommendations.

Automated Code Review Workflow

Initial Triage

  1. Parse diff to determine modified files and affected components
  2. Match file types to optimal static analysis tools
  3. Scale analysis based on PR size (superficial >1000 lines, deep <200 lines)
  4. Classify change type: feature, bug fix, refactoring, or breaking change

Multi-Tool Static Analysis

Execute in parallel:

  • CodeQL: Deep vulnerability analysis (SQL injection, XSS, auth bypasses)
  • SonarQube: Code smells, complexity, duplication, maintainability
  • Semgrep: Organization-specific rules and security policies
  • Snyk/Dependabot: Supply chain security
  • GitGuardian/TruffleHog: Secret detection

AI-Assisted Review

```python

# Context-aware review prompt for Claude 4.5 Sonnet

review_prompt = f"""

You are reviewing a pull request for a {language} {project_type} application.

Change Summary: {pr_description}

Modified Code: {code_diff}

Static Analysis: {sonarqube_issues}, {codeql_alerts}

Architecture: {system_architecture_summary}

Focus on:

  1. Security vulnerabilities missed by static tools
  2. Performance implications at scale
  3. Edge cases and error handling gaps
  4. API contract compatibility
  5. Testability and missing coverage
  6. Architectural alignment

For each issue:

  • Specify file path and line numbers
  • Classify severity: CRITICAL/HIGH/MEDIUM/LOW
  • Explain problem (1-2 sentences)
  • Provide concrete fix example
  • Link relevant documentation

Format as JSON array.

"""

```

Model Selection (2025)

  • Fast reviews (<200 lines): GPT-4o-mini or Claude 4.5 Haiku
  • Deep reasoning: Claude 4.5 Sonnet or GPT-5 (200K+ tokens)
  • Code generation: GitHub Copilot or Qodo
  • Multi-language: Qodo or CodeAnt AI (30+ languages)

Review Routing

```typescript

interface ReviewRoutingStrategy {

async routeReview(pr: PullRequest): Promise {

const metrics = await this.analyzePRComplexity(pr);

if (metrics.filesChanged > 50 || metrics.linesChanged > 1000) {

return new HumanReviewRequired("Too large for automation");

}

if (metrics.securitySensitive || metrics.affectsAuth) {

return new AIEngine("claude-3.7-sonnet", {

temperature: 0.1,

maxTokens: 4000,

systemPrompt: SECURITY_FOCUSED_PROMPT

});

}

if (metrics.testCoverageGap > 20) {

return new QodoEngine({ mode: "test-generation", coverageTarget: 80 });

}

return new AIEngine("gpt-4o", { temperature: 0.3, maxTokens: 2000 });

}

}

```

Architecture Analysis

Architectural Coherence

  1. Dependency Direction: Inner layers don't depend on outer layers
  2. SOLID Principles:

- Single Responsibility, Open/Closed, Liskov Substitution

- Interface Segregation, Dependency Inversion

  1. Anti-patterns:

- Singleton (global state), God objects (>500 lines, >20 methods)

- Anemic models, Shotgun surgery

Microservices Review

```go

type MicroserviceReviewChecklist struct {

CheckServiceCohesion bool // Single capability per service?

CheckDataOwnership bool // Each service owns database?

CheckAPIVersioning bool // Semantic versioning?

CheckBackwardCompatibility bool // Breaking changes flagged?

CheckCircuitBreakers bool // Resilience patterns?

CheckIdempotency bool // Duplicate event handling?

}

func (r *MicroserviceReviewer) AnalyzeServiceBoundaries(code string) []Issue {

issues := []Issue{}

if detectsSharedDatabase(code) {

issues = append(issues, Issue{

Severity: "HIGH",

Category: "Architecture",

Message: "Services sharing database violates bounded context",

Fix: "Implement database-per-service with eventual consistency",

})

}

if hasBreakingAPIChanges(code) && !hasDeprecationWarnings(code) {

issues = append(issues, Issue{

Severity: "CRITICAL",

Category: "API Design",

Message: "Breaking change without deprecation period",

Fix: "Maintain backward compatibility via versioning (v1, v2)",

})

}

return issues

}

```

Security Vulnerability Detection

Multi-Layered Security

SAST Layer: CodeQL, Semgrep, Bandit/Brakeman/Gosec

AI-Enhanced Threat Modeling:

```python

security_analysis_prompt = """

Analyze authentication code for vulnerabilities:

{code_snippet}

Check for:

  1. Authentication bypass, broken access control (IDOR)
  2. JWT token validation flaws
  3. Session fixation/hijacking, timing attacks
  4. Missing rate limiting, insecure password storage
  5. Credential stuffing protection gaps

Provide: CWE identifier, CVSS score, exploit scenario, remediation code

"""

findings = claude.analyze(security_analysis_prompt, temperature=0.1)

```

Secret Scanning:

```bash

trufflehog git file://. --json | \

jq '.[] | select(.Verified == true) | {

secret_type: .DetectorName,

file: .SourceMetadata.Data.Filename,

severity: "CRITICAL"

}'

```

OWASP Top 10 (2025)

  1. A01 - Broken Access Control: Missing authorization, IDOR
  2. A02 - Cryptographic Failures: Weak hashing, insecure RNG
  3. A03 - Injection: SQL, NoSQL, command injection via taint analysis
  4. A04 - Insecure Design: Missing threat modeling
  5. A05 - Security Misconfiguration: Default credentials
  6. A06 - Vulnerable Components: Snyk/Dependabot for CVEs
  7. A07 - Authentication Failures: Weak session management
  8. A08 - Data Integrity Failures: Unsigned JWTs
  9. A09 - Logging Failures: Missing audit logs
  10. A10 - SSRF: Unvalidated user-controlled URLs

Performance Review

Performance Profiling

```javascript

class PerformanceReviewAgent {

async analyzePRPerformance(prNumber) {

const baseline = await this.loadBaselineMetrics('main');

const prBranch = await this.runBenchmarks(pr-${prNumber});

const regressions = this.detectRegressions(baseline, prBranch, {

cpuThreshold: 10, memoryThreshold: 15, latencyThreshold: 20

});

if (regressions.length > 0) {

await this.postReviewComment(prNumber, {

severity: 'HIGH',

title: '⚠️ Performance Regression Detected',

body: this.formatRegressionReport(regressions),

suggestions: await this.aiGenerateOptimizations(regressions)

});

}

}

}

```

Scalability Red Flags

  • N+1 Queries, Missing Indexes, Synchronous External Calls
  • In-Memory State, Unbounded Collections, Missing Pagination
  • No Connection Pooling, No Rate Limiting

```python

def detect_n_plus_1_queries(code_ast):

issues = []

for loop in find_loops(code_ast):

db_calls = find_database_calls_in_scope(loop.body)

if len(db_calls) > 0:

issues.append({

'severity': 'HIGH',

'line': loop.line_number,

'message': f'N+1 query: {len(db_calls)} DB calls in loop',

'fix': 'Use eager loading (JOIN) or batch loading'

})

return issues

```

Review Comment Generation

Structured Format

```typescript

interface ReviewComment {

path: string; line: number;

severity: 'CRITICAL' | 'HIGH' | 'MEDIUM' | 'LOW' | 'INFO';

category: 'Security' | 'Performance' | 'Bug' | 'Maintainability';

title: string; description: string;

codeExample?: string; references?: string[];

autoFixable: boolean; cwe?: string; cvss?: number;

effort: 'trivial' | 'easy' | 'medium' | 'hard';

}

const comment: ReviewComment = {

path: "src/auth/login.ts", line: 42,

severity: "CRITICAL", category: "Security",

title: "SQL Injection in Login Query",

description: `String concatenation with user input enables SQL injection.

Attack Vector: Input 'admin' OR '1'='1' bypasses authentication.

Impact: Complete auth bypass, unauthorized access.`,

codeExample: `

// ❌ Vulnerable

const query = \SELECT * FROM users WHERE username = '\${username}'\;

// βœ… Secure

const query = 'SELECT * FROM users WHERE username = ?';

const result = await db.execute(query, [username]);

`,

references: ["https://cwe.mitre.org/data/definitions/89.html"],

autoFixable: false, cwe: "CWE-89", cvss: 9.8, effort: "easy"

};

```

CI/CD Integration

GitHub Actions

```yaml

name: AI Code Review

on:

pull_request:

types: [opened, synchronize, reopened]

jobs:

ai-review:

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v4

- name: Static Analysis

run: |

sonar-scanner -Dsonar.pullrequest.key=${{ github.event.number }}

codeql database create codeql-db --language=javascript,python

semgrep scan --config=auto --sarif --output=semgrep.sarif

- name: AI-Enhanced Review (GPT-5)

env:

OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}

run: |

python scripts/ai_review.py \

--pr-number ${{ github.event.number }} \

--model gpt-4o \

--static-analysis-results codeql.sarif,semgrep.sarif

- name: Post Comments

uses: actions/github-script@v7

with:

script: |

const comments = JSON.parse(fs.readFileSync('review-comments.json'));

for (const comment of comments) {

await github.rest.pulls.createReviewComment({

owner: context.repo.owner,

repo: context.repo.repo,

pull_number: context.issue.number,

body: comment.body, path: comment.path, line: comment.line

});

}

- name: Quality Gate

run: |

CRITICAL=$(jq '[.[] | select(.severity == "CRITICAL")] | length' review-comments.json)

if [ $CRITICAL -gt 0 ]; then

echo "❌ Found $CRITICAL critical issues"

exit 1

fi

```

Complete Example: AI Review Automation

```python

#!/usr/bin/env python3

import os, json, subprocess

from dataclasses import dataclass

from typing import List, Dict, Any

from anthropic import Anthropic

@dataclass

class ReviewIssue:

file_path: str; line: int; severity: str

category: str; title: str; description: str

code_example: str = ""; auto_fixable: bool = False

class CodeReviewOrchestrator:

def __init__(self, pr_number: int, repo: str):

self.pr_number = pr_number; self.repo = repo

self.github_token = os.environ['GITHUB_TOKEN']

self.anthropic_client = Anthropic(api_key=os.environ['ANTHROPIC_API_KEY'])

self.issues: List[ReviewIssue] = []

def run_static_analysis(self) -> Dict[str, Any]:

results = {}

# SonarQube

subprocess.run(['sonar-scanner', f'-Dsonar.projectKey={self.repo}'], check=True)

# Semgrep

semgrep_output = subprocess.check_output(['semgrep', 'scan', '--config=auto', '--json'])

results['semgrep'] = json.loads(semgrep_output)

return results

def ai_review(self, diff: str, static_results: Dict) -> List[ReviewIssue]:

prompt = f"""Review this PR comprehensively.

Diff: {diff[:15000]}

Static Analysis: {json.dumps(static_results, indent=2)[:5000]}

Focus: Security, Performance, Architecture, Bug risks, Maintainability

Return JSON array:

[{{

"file_path": "src/auth.py", "line": 42, "severity": "CRITICAL",

"category": "Security", "title": "Brief summary",

"description": "Detailed explanation", "code_example": "Fix code"

}}]

"""

response = self.anthropic_client.messages.create(

model="claude-3-5-sonnet-20241022",

max_tokens=8000, temperature=0.2,

messages=[{"role": "user", "content": prompt}]

)

content = response.content[0].text

if '```json' in content:

content = content.split('``json')[1].split('``')[0]

return [ReviewIssue(**issue) for issue in json.loads(content.strip())]

def post_review_comments(self, issues: List[ReviewIssue]):

summary = "## πŸ€– AI Code Review\n\n"

by_severity = {}

for issue in issues:

by_severity.setdefault(issue.severity, []).append(issue)

for severity in ['CRITICAL', 'HIGH', 'MEDIUM', 'LOW']:

count = len(by_severity.get(severity, []))

if count > 0:

summary += f"- {severity}: {count}\n"

critical_count = len(by_severity.get('CRITICAL', []))

review_data = {

'body': summary,

'event': 'REQUEST_CHANGES' if critical_count > 0 else 'COMMENT',

'comments': [issue.to_github_comment() for issue in issues]

}

# Post to GitHub API

print(f"βœ… Posted review with {len(issues)} comments")

if __name__ == '__main__':

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('--pr-number', type=int, required=True)

parser.add_argument('--repo', required=True)

args = parser.parse_args()

reviewer = CodeReviewOrchestrator(args.pr_number, args.repo)

static_results = reviewer.run_static_analysis()

diff = reviewer.get_pr_diff()

ai_issues = reviewer.ai_review(diff, static_results)

reviewer.post_review_comments(ai_issues)

```

Summary

Comprehensive AI code review combining:

  1. Multi-tool static analysis (SonarQube, CodeQL, Semgrep)
  2. State-of-the-art LLMs (GPT-5, Claude 4.5 Sonnet)
  3. Seamless CI/CD integration (GitHub Actions, GitLab, Azure DevOps)
  4. 30+ language support with language-specific linters
  5. Actionable review comments with severity and fix examples
  6. DORA metrics tracking for review effectiveness
  7. Quality gates preventing low-quality code
  8. Auto-test generation via Qodo/CodiumAI

Use this tool to transform code review from manual process to automated AI-assisted quality assurance catching issues early with instant feedback.

More from this repository10

🎯
next-intl-app-router🎯Skill

Configures Next.js App Router internationalization with next-intl, enabling locale-based routing and translation management across multilingual projects.

🎯
code-refactoring-tech-debt🎯Skill

Refactors and improves code quality by identifying technical debt, suggesting optimizations, and generating cleaner, more efficient code implementations.

🎯
copywriting🎯Skill

Generates clear, compelling marketing copy that aligns with audience needs, business goals, and conversion best practices without fabricating claims.

🎯
frontend-patterns🎯Skill

I apologize, but I cannot generate a description without seeing the actual content or details of the "frontend-patterns" skill from the repository. Could you provide more context about what this sp...

🎯
web-design-guidelines🎯Skill

I apologize, but I cannot generate a description without seeing the actual content or context of the "web-design-guidelines" skill from the repository. Could you provide me with more details about ...

🎯
page-cro🎯Skill

Optimizes individual web pages for higher conversion rates by diagnosing performance issues and providing targeted, evidence-based recommendations.

🎯
clean-code🎯Skill

Enforces pragmatic coding standards by ensuring concise, direct code with clear responsibilities, minimal complexity, and no unnecessary abstractions.

🎯
ui-ux-pro-max🎯Skill

I apologize, but I cannot generate a description without seeing the actual content or details of the "ui-ux-pro-max" skill from the repository. Could you provide more context or information about w...

🎯
tailwind-patterns🎯Skill

Generates responsive and semantic CSS configurations using Tailwind CSS v4's native, CSS-first design token architecture and container query patterns.

🎯
error-diagnostics-smart-debug🎯Skill

I apologize, but I cannot generate a description without seeing the actual content or context of the "error-diagnostics-smart-debug" skill from the repository. Could you provide more details about ...