python-skills
π―Skillfrom llama-farm/llamafarm
Provides comprehensive Python best practices and code review guidelines for ensuring high-quality, secure, and maintainable code across LlamaFarm's Python components.
Installation
npx skills add https://github.com/llama-farm/llamafarm --skill python-skillsSkill Details
Shared Python best practices for LlamaFarm. Covers patterns, async, typing, testing, error handling, and security.
Overview
# Python Skills for LlamaFarm
Shared Python best practices and code review checklists for all Python components in the LlamaFarm monorepo.
Applicable Components
| Component | Path | Python | Key Dependencies |
|-----------|------|--------|-----------------|
| Server | server/ | 3.12+ | FastAPI, Celery, Pydantic, structlog |
| RAG | rag/ | 3.11+ | LlamaIndex, ChromaDB, Celery |
| Universal Runtime | runtimes/universal/ | 3.11+ | PyTorch, transformers, FastAPI |
| Config | config/ | 3.11+ | Pydantic, JSONSchema |
| Common | common/ | 3.10+ | HuggingFace Hub |
Quick Reference
| Topic | File | Key Points |
|-------|------|------------|
| Patterns | [patterns.md](patterns.md) | Dataclasses, Pydantic, comprehensions, imports |
| Async | [async.md](async.md) | async/await, asyncio, concurrent execution |
| Typing | [typing.md](typing.md) | Type hints, generics, protocols, Pydantic |
| Testing | [testing.md](testing.md) | Pytest fixtures, mocking, async tests |
| Errors | [error-handling.md](error-handling.md) | Custom exceptions, logging, context managers |
| Security | [security.md](security.md) | Path traversal, injection, secrets, deserialization |
Code Style
LlamaFarm uses ruff with shared configuration in ruff.toml:
```toml
line-length = 88
target-version = "py311"
select = ["E", "F", "I", "B", "UP", "SIM"]
```
Key rules:
- E, F: Core pyflakes and pycodestyle
- I: Import sorting (isort)
- B: Bugbear (common pitfalls)
- UP: Upgrade syntax to modern Python
- SIM: Simplify code patterns
Architecture Patterns
Settings with pydantic-settings
```python
from pydantic_settings import BaseSettings
class Settings(BaseSettings, env_file=".env"):
LOG_LEVEL: str = "INFO"
HOST: str = "0.0.0.0"
PORT: int = 8000
settings = Settings() # Singleton at module level
```
Structured Logging with structlog
```python
from core.logging import FastAPIStructLogger # Server
from core.logging import RAGStructLogger # RAG
from core.logging import UniversalRuntimeLogger # Runtime
logger = FastAPIStructLogger(__name__)
logger.info("Operation completed", extra={"count": 10, "duration_ms": 150})
```
Abstract Base Classes for Extensibility
```python
from abc import ABC, abstractmethod
class Component(ABC):
def __init__(self, name: str, config: dict[str, Any] | None = None):
self.name = name or self.__class__.__name__
self.config = config or {}
@abstractmethod
def process(self, documents: list[Document]) -> ProcessingResult:
pass
```
Dataclasses for Internal Data
```python
from dataclasses import dataclass, field
@dataclass
class Document:
content: str
metadata: dict[str, Any] = field(default_factory=dict)
id: str = field(default_factory=lambda: str(uuid.uuid4()))
```
Pydantic Models for API Boundaries
```python
from pydantic import BaseModel, Field, ConfigDict
class EmbeddingRequest(BaseModel):
model: str
input: str | list[str]
encoding_format: Literal["float", "base64"] | None = "float"
model_config = ConfigDict(str_strip_whitespace=True)
```
Directory Structure
Each Python component follows this structure:
```
component/
βββ pyproject.toml # UV-managed dependencies
βββ core/ # Core functionality
β βββ __init__.py
β βββ settings.py # Pydantic Settings
β βββ logging.py # structlog setup
βββ services/ # Business logic (server)
βββ models/ # ML models (runtime)
βββ tasks/ # Celery tasks (rag)
βββ utils/ # Utility functions
βββ tests/
βββ conftest.py # Shared fixtures
βββ test_*.py
```
Review Checklist Summary
When reviewing Python code in LlamaFarm:
- Patterns (Medium priority)
- Modern Python syntax (3.10+ type hints)
- Dataclass vs Pydantic used appropriately
- No mutable default arguments
- Async (High priority)
- No blocking calls in async functions
- Proper asyncio.Lock usage
- Cancellation handled correctly
- Typing (Medium priority)
- Complete return type hints
- Generic types parameterized
- Pydantic v2 patterns
- Testing (Medium priority)
- Fixtures properly scoped
- Async tests use pytest-asyncio
- Mocks cleaned up
- Errors (High priority)
- Custom exceptions with context
- Structured logging with extra dict
- Proper exception chaining
- Security (Critical priority)
- Path traversal prevention
- Input sanitization
- Safe deserialization
See individual topic files for detailed checklists with grep patterns.
More from this repository10
Manages shared Python utilities for LlamaFarm, focusing on HuggingFace model handling, GGUF file management, and cross-service consistency.
Implements robust RAG document processing and retrieval using LlamaIndex, ChromaDB, and Celery for efficient, scalable AI document workflows.
Generates specialized Claude Code skills for each subsystem, creating shared language and subsystem-specific checklists to optimize AI code generation across the monorepo.
Configures secure Electron desktop application architecture with isolated processes, type-safe IPC, and cross-platform packaging for LlamaFarm.
Enforces Go best practices and idiomatic patterns for secure, maintainable LlamaFarm CLI development.
Enforces strict TypeScript best practices for React and Electron frontend applications, ensuring type safety, immutability, and clean code patterns.
Provides comprehensive Go CLI development guidelines using Cobra, Bubbletea, and Lipgloss for creating robust, interactive command-line interfaces in LlamaFarm projects.
Automates git workflow by committing changes, pushing to GitHub, and opening a PR with intelligent checks and handling of edge cases.
Provides server-side best practices and code review guidelines for FastAPI, Celery, and Pydantic frameworks in Python.
Optimizes ML inference runtime with best practices for PyTorch, Transformers, and FastAPI, focusing on device management, model loading, and performance tuning.