🎯

unit-test-writer

🎯Skill

from matteocervelli/llms

VibeIndex|
What it does

Automatically generates comprehensive unit tests for functions and methods, covering edge cases and improving code reliability with minimal manual effort

unit-test-writer

Installation

Install skill:
npx skills add https://github.com/matteocervelli/llms --skill unit-test-writer
5
Last UpdatedNov 17, 2025

Skill Details

SKILL.md

Generate comprehensive unit tests with proper structure, mocking, and

Overview

# Unit Test Writer Skill

Purpose

This skill provides systematic guidance for writing comprehensive, maintainable unit tests that achieve high coverage and follow best practices across multiple programming languages.

When to Use

  • Need to create unit tests for new code
  • Want to improve existing test coverage
  • Need guidance on test structure and organization
  • Writing tests following TDD methodology
  • Ensuring proper mocking and fixtures

Unit Testing Principles

Test Structure: Arrange-Act-Assert (AAA)

Every test should follow this clear pattern:

```python

def test_feature_condition_expected():

"""Clear test description."""

# Arrange: Setup test data and dependencies

input_data = create_test_data()

mock_dependency = setup_mock()

# Act: Execute the code under test

result = function_under_test(input_data, mock_dependency)

# Assert: Verify expected outcomes

assert result.status == "success"

mock_dependency.method.assert_called_once()

```

Test Naming Conventions

Python (pytest):

  • Pattern: test___
  • File: test_.py
  • Examples:

- test_create_user_valid_data_returns_user

- test_validate_email_invalid_format_raises_error

- test_process_data_empty_input_returns_empty_list

JavaScript/TypeScript (Jest):

  • Pattern: should when
  • File: .test.ts or .test.js
  • Examples:

- should return user when valid data provided

- should throw error when email format is invalid

- should return empty list when input is empty

Coverage Goals

  • Overall coverage: β‰₯ 80%
  • Critical business logic: β‰₯ 90%
  • Error handling paths: 100%
  • Utility functions: β‰₯ 85%

---

Unit Testing Workflow

1. Analyze Code to Test

Read and understand the source:

```bash

# Read the source file

cat src/module/feature.py

# Identify:

# - Functions and classes to test

# - Dependencies and external calls

# - Error conditions and edge cases

# - Input validation requirements

```

Checklist:

  • [ ] Identify all public functions/methods
  • [ ] Note external dependencies (APIs, databases, file system)
  • [ ] Identify edge cases and boundary conditions
  • [ ] List error conditions to test
  • [ ] Understand expected behavior

Deliverable: Analysis of test requirements

---

2. Create Test File Structure

File naming:

  • Python: tests/test_.py
  • JavaScript/TypeScript: tests/.test.ts

Test file template:

```python

"""

Unit tests for [module description].

Tests cover:

  • [Functionality area 1]
  • [Functionality area 2]
  • Error handling and edge cases

"""

import pytest

from unittest.mock import Mock, MagicMock, patch

from typing import Any

from src.module.feature import (

FunctionToTest,

ClassToTest,

ExceptionToRaise

)

# ============================================================================

# Fixtures

# ============================================================================

@pytest.fixture

def sample_input() -> dict[str, Any]:

"""Sample input data for tests."""

return {

"field1": "value1",

"field2": 123

}

@pytest.fixture

def mock_dependency() -> Mock:

"""Mock external dependency."""

mock = Mock()

mock.method.return_value = {"status": "success"}

return mock

# ============================================================================

# Test Classes

# ============================================================================

class TestClassName:

"""Tests for ClassName functionality."""

def test_init_valid_params_creates_instance(self):

"""Test initialization with valid parameters."""

pass

def test_method_valid_input_returns_expected(self):

"""Test method with valid input."""

pass

# ============================================================================

# Test Functions

# ============================================================================

def test_function_valid_input_returns_expected():

"""Test function with valid input."""

pass

def test_function_invalid_input_raises_error():

"""Test function with invalid input raises error."""

pass

```

Deliverable: Structured test file

---

3. Write Test Cases

Test coverage checklist:

  • [ ] Happy path: Normal successful execution
  • [ ] Edge cases: Boundary conditions (empty, null, max values)
  • [ ] Error cases: Invalid input, exceptions
  • [ ] State changes: Verify object state after operations
  • [ ] Side effects: Verify external calls (mocked)
  • [ ] Return values: Verify correct outputs
  • [ ] Data validation: Input validation tests

Example test cases:

```python

def test_create_user_valid_data_returns_user(sample_input, mock_db):

"""Test user creation with valid data."""

# Arrange

service = UserService(database=mock_db)

# Act

user = service.create_user(sample_input)

# Assert

assert user.name == sample_input["name"]

assert user.email == sample_input["email"]

mock_db.save.assert_called_once()

def test_create_user_duplicate_email_raises_error(mock_db):

"""Test user creation with duplicate email raises error."""

# Arrange

service = UserService(database=mock_db)

mock_db.exists.return_value = True

# Act & Assert

with pytest.raises(DuplicateEmailError):

service.create_user({"email": "test@example.com"})

def test_create_user_invalid_email_raises_error():

"""Test user creation with invalid email format."""

# Arrange

service = UserService()

invalid_data = {"email": "not-an-email"}

# Act & Assert

with pytest.raises(ValidationError, match="Invalid email"):

service.create_user(invalid_data)

@pytest.mark.parametrize("email,valid", [

("user@example.com", True),

("invalid.email", False),

("", False),

(None, False),

("@example.com", False),

("user@", False),

])

def test_email_validation(email, valid):

"""Test email validation with various inputs."""

# Act

result = validate_email(email)

# Assert

assert result == valid

```

Deliverable: Comprehensive test cases

---

4. Implement Mocking

When to mock:

  • External API calls
  • Database operations
  • File system operations
  • Time-dependent operations
  • Random number generation
  • External services

Mocking patterns:

```python

# Mock with unittest.mock

from unittest.mock import Mock, MagicMock, patch

# Method 1: Mock passed as argument

def test_with_mock_argument(mock_dependency):

service = Service(dependency=mock_dependency)

result = service.process()

mock_dependency.method.assert_called_once()

# Method 2: Patch decorator

@patch('module.external_function')

def test_with_patch(mock_external):

mock_external.return_value = "expected"

result = function_using_external()

assert result == "expected"

# Method 3: Context manager

def test_with_context_manager():

with patch('module.external_function') as mock_func:

mock_func.return_value = "expected"

result = function_using_external()

assert result == "expected"

# Mock side effects

def test_with_side_effect():

mock = Mock()

mock.method.side_effect = [1, 2, 3] # Returns different values

assert mock.method() == 1

assert mock.method() == 2

assert mock.method() == 3

# Mock exceptions

def test_with_exception():

mock = Mock()

mock.method.side_effect = ValueError("Error message")

with pytest.raises(ValueError):

mock.method()

```

Deliverable: Properly mocked tests

---

5. Write Fixtures

Fixture patterns:

```python

# conftest.py - Shared fixtures

import pytest

from pathlib import Path

@pytest.fixture

def sample_data() -> dict:

"""Sample data for tests."""

return {

"id": 1,

"name": "test",

"value": 123

}

@pytest.fixture

def temp_directory(tmp_path: Path) -> Path:

"""Temporary directory for test files."""

test_dir = tmp_path / "test_data"

test_dir.mkdir()

return test_dir

@pytest.fixture

def mock_database() -> Mock:

"""Mock database connection."""

mock_db = Mock()

mock_db.connect.return_value = True

mock_db.execute.return_value = []

return mock_db

@pytest.fixture

def user_service(mock_database) -> UserService:

"""UserService with mocked database."""

return UserService(database=mock_database)

# Fixture with setup and teardown

@pytest.fixture

def setup_environment():

"""Setup test environment."""

# Setup

original_value = os.environ.get("TEST_VAR")

os.environ["TEST_VAR"] = "test_value"

yield # Test runs here

# Teardown

if original_value:

os.environ["TEST_VAR"] = original_value

else:

del os.environ["TEST_VAR"]

# Parametrized fixture

@pytest.fixture(params=["value1", "value2", "value3"])

def test_values(request):

"""Parametrized fixture for multiple test values."""

return request.param

```

Deliverable: Reusable test fixtures

---

6. Test Async Code

Python async tests:

```python

import pytest

import asyncio

@pytest.mark.asyncio

async def test_async_function():

"""Test async function."""

# Arrange

input_data = {"key": "value"}

# Act

result = await async_function(input_data)

# Assert

assert result.success is True

@pytest.mark.asyncio

async def test_async_with_mock():

"""Test async function with mock."""

# Arrange

mock_api = Mock()

mock_api.fetch = AsyncMock(return_value={"data": "test"})

# Act

result = await process_with_api(mock_api)

# Assert

assert result["data"] == "test"

mock_api.fetch.assert_called_once()

```

JavaScript/TypeScript async tests:

```typescript

describe('async operations', () => {

it('should resolve with expected result', async () => {

// Arrange

const input = { key: 'value' };

// Act

const result = await asyncFunction(input);

// Assert

expect(result.success).toBe(true);

});

it('should reject with error', async () => {

// Arrange

const invalidInput = null;

// Act & Assert

await expect(asyncFunction(invalidInput)).rejects.toThrow('Invalid input');

});

});

```

Deliverable: Tested async operations

---

7. Run Tests and Check Coverage

Run tests:

```bash

# Python (pytest)

pytest tests/ -v

pytest tests/test_feature.py -v

pytest tests/test_feature.py::test_specific_test -v

# With coverage

pytest tests/ --cov=src --cov-report=html --cov-report=term-missing

# JavaScript/TypeScript (Jest)

npm test

jest tests/Feature.test.ts

jest --coverage

```

Check coverage report:

```bash

# Python - View HTML coverage report

open htmlcov/index.html

# Identify uncovered lines

pytest --cov=src --cov-report=term-missing

# JavaScript - View coverage

open coverage/lcov-report/index.html

```

Coverage checklist:

  • [ ] Overall coverage β‰₯ 80%
  • [ ] All critical paths covered
  • [ ] All error conditions tested
  • [ ] All public APIs tested
  • [ ] No untested branches in critical code

Deliverable: Coverage report with β‰₯ 80% coverage

---

Testing Best Practices

1. Test Independence

Each test should be independent:

```python

# Good: Independent tests

def test_create_user():

user = create_user({"name": "Alice"})

assert user.name == "Alice"

def test_delete_user():

user = create_user({"name": "Bob"})

delete_user(user.id)

assert get_user(user.id) is None

# Bad: Tests depend on each other

def test_create_user():

global created_user

created_user = create_user({"name": "Alice"})

def test_delete_user():

# Depends on test_create_user running first

delete_user(created_user.id)

```

2. Clear Test Names

Descriptive test names:

```python

# Good: Clear and descriptive

def test_create_user_with_valid_email_returns_user():

pass

def test_create_user_with_duplicate_email_raises_duplicate_error():

pass

# Bad: Unclear names

def test_user1():

pass

def test_error():

pass

```

3. One Assertion Per Test (Generally)

```python

# Good: Tests one thing

def test_user_creation_sets_name():

user = create_user({"name": "Alice"})

assert user.name == "Alice"

def test_user_creation_generates_id():

user = create_user({"name": "Alice"})

assert user.id is not None

# Acceptable: Related assertions

def test_user_creation_returns_user_with_attributes():

user = create_user({"name": "Alice", "email": "alice@example.com"})

assert user.name == "Alice"

assert user.email == "alice@example.com"

assert user.id is not None

```

4. Test Behavior, Not Implementation

```python

# Good: Tests behavior

def test_user_validation_rejects_invalid_email():

with pytest.raises(ValidationError):

validate_user({"email": "invalid"})

# Bad: Tests implementation details

def test_user_validation_calls_email_regex():

# Don't test that specific internal method is called

validator = UserValidator()

validator.validate({"email": "test@example.com"})

assert validator._email_regex_called is True

```

5. Use Descriptive Assertion Messages

```python

# Good: Clear failure messages

assert len(users) == 3, f"Expected 3 users, got {len(users)}"

assert user.is_active, f"User {user.id} should be active"

# Better: Use pytest assertion introspection

assert len(users) == 3 # pytest shows actual vs expected

```

---

Common Patterns

Testing Exceptions

```python

# Method 1: pytest.raises context manager

def test_raises_value_error():

with pytest.raises(ValueError):

function_that_raises()

# Method 2: With message matching

def test_raises_specific_error():

with pytest.raises(ValueError, match="Invalid input"):

function_that_raises()

# Method 3: Capturing exception for inspection

def test_exception_details():

with pytest.raises(CustomError) as exc_info:

function_that_raises()

assert exc_info.value.code == 400

assert "field" in exc_info.value.details

```

Parametrized Tests

```python

@pytest.mark.parametrize("input_value,expected", [

("valid@email.com", True),

("invalid.email", False),

("", False),

("no@domain", False),

("@no-user.com", False),

])

def test_email_validation(input_value, expected):

"""Test email validation with multiple inputs."""

result = validate_email(input_value)

assert result == expected

@pytest.mark.parametrize("user_type,can_delete", [

("admin", True),

("moderator", True),

("user", False),

("guest", False),

])

def test_deletion_permissions(user_type, can_delete):

"""Test deletion permissions by user type."""

user = User(type=user_type)

assert user.can_delete() == can_delete

```

Testing File Operations

```python

def test_save_file(tmp_path):

"""Test file saving."""

# Arrange

file_path = tmp_path / "test_file.txt"

content = "test content"

# Act

save_file(file_path, content)

# Assert

assert file_path.exists()

assert file_path.read_text() == content

def test_read_file(tmp_path):

"""Test file reading."""

# Arrange

file_path = tmp_path / "test_file.txt"

file_path.write_text("test content")

# Act

content = read_file(file_path)

# Assert

assert content == "test content"

```

Testing Time-Dependent Code

```python

from datetime import datetime, timedelta

from unittest.mock import patch

@patch('module.datetime')

def test_time_based_function(mock_datetime):

"""Test function that depends on current time."""

# Arrange

fixed_time = datetime(2024, 1, 1, 12, 0, 0)

mock_datetime.now.return_value = fixed_time

# Act

result = get_expiration_time()

# Assert

expected = fixed_time + timedelta(days=30)

assert result == expected

```

---

Supporting Resources

Refer to these additional files for specific guidance:

  • testing-patterns.md: Common testing patterns and examples
  • mocking-guide.md: Comprehensive mocking strategies
  • coverage-guide.md: Coverage analysis and improvement strategies

---

Integration with Testing Workflow

Input: Source code to test

Process: Analyze β†’ Structure β†’ Write tests β†’ Mock β†’ Run β†’ Verify

Output: Comprehensive unit test suite with β‰₯ 80% coverage

Next Step: Integration testing or validation

---

Quality Checklist

Before completing unit testing:

  • [ ] All public functions/methods have tests
  • [ ] Test naming follows conventions
  • [ ] Tests follow Arrange-Act-Assert pattern
  • [ ] External dependencies are mocked
  • [ ] Edge cases are tested
  • [ ] Error conditions are tested
  • [ ] Tests are independent
  • [ ] All tests pass
  • [ ] Coverage β‰₯ 80%
  • [ ] No flaky tests
  • [ ] Tests run quickly (< 1 minute)
  • [ ] Clear test documentation

---

Remember

  • Write tests first (TDD: Red β†’ Green β†’ Refactor)
  • Test behavior, not implementation
  • Mock external dependencies
  • Keep tests simple and focused
  • Use descriptive names
  • Aim for high coverage of critical paths
  • Tests are documentation - make them readable
  • Fast tests = productive development

More from this repository10

🎯
e2e-test-writer🎯Skill

Generates comprehensive end-to-end browser tests using Playwright, implementing page object model and best practices for user workflow validation.

🎯
dependency-analyzer🎯Skill

Analyzes project dependencies, builds dependency trees, detects conflicts, and checks compatibility across Python projects.

🎯
implementation🎯Skill

Systematically implements software features by writing tests first, creating clean code, and documenting according to project standards.

🎯
api-test-generator🎯Skill

Generates comprehensive API endpoint tests for REST and GraphQL APIs, covering HTTP methods, authentication, validation, and error scenarios.

🎯
doc-analyzer🎯Skill

doc-analyzer skill from matteocervelli/llms

🎯
design-synthesizer🎯Skill

design-synthesizer skill from matteocervelli/llms

🎯
documentation-updater🎯Skill

Systematically updates project documentation across implementation docs, user guides, API docs, and architecture diagrams after feature completion.

🎯
data-modeler🎯Skill

Designs comprehensive Pydantic data models with robust type annotations, validation rules, and relationship mappings for Python applications.

🎯
architecture-planner🎯Skill

Designs clean, modular software architectures using established patterns like Layered and Hexagonal Architecture to create maintainable and scalable system structures.

🎯
doc-fetcher🎯Skill

Fetches comprehensive, version-specific library and framework documentation using MCP integrations for accurate implementation guidance.