🎯

text-to-sql

🎯Skill

from oimiragieo/agent-studio

VibeIndex|
What it does

text-to-sql skill from oimiragieo/agent-studio

text-to-sql

Installation

Install skill:
npx skills add https://github.com/oimiragieo/agent-studio --skill text-to-sql
2
AddedJan 29, 2026

Skill Details

SKILL.md

Convert natural language queries to SQL. Use for database queries, data analysis, and reporting.

Overview

# Text-to-SQL Skill

Identity

Text-to-SQL - Converts natural language queries to SQL using database schema context and query patterns.

Capabilities

  • Query Generation: Convert natural language to SQL
  • Schema Awareness: Uses database schema for accurate queries
  • Query Optimization: Generates optimized SQL queries
  • Parameterized Queries: Creates safe, parameterized queries

Usage

Basic SQL Generation

When to Use:

  • Database queries from natural language
  • Data analysis requests
  • Reporting queries
  • Ad-hoc database queries

How to Invoke:

```

"Generate SQL to find all users who signed up in the last month"

"Create a query to calculate total revenue by product"

"Write SQL to find duplicate records"

```

What It Does:

  • Analyzes natural language query
  • References database schema
  • Generates SQL query
  • Validates query syntax
  • Returns parameterized query

Advanced Features

Schema Integration:

  • Loads database schema
  • Understands table relationships
  • Uses column types and constraints
  • Handles joins and aggregations

Query Optimization:

  • Generates efficient queries
  • Uses appropriate indexes
  • Optimizes joins
  • Minimizes data transfer

Safety:

  • Parameterized queries (prevents SQL injection)
  • Validates query syntax
  • Tests on sample data
  • Error handling

Best Practices

  1. Schema Context: Provide complete database schema
  2. Query Validation: Validate SQL before execution
  3. Parameterization: Always use parameterized queries
  4. Testing: Test queries on sample data
  5. Optimization: Review query performance

Integration

With Database Architect

Text-to-SQL uses schema from database-architect:

  • Table definitions
  • Relationships
  • Constraints
  • Indexes

With Developer

Text-to-SQL generates queries for developers:

  • Query templates
  • Parameterized queries
  • Query optimization
  • Error handling

Examples

Example 1: Simple Query

```

User: "Find all users who signed up in the last month"

Text-to-SQL:

  1. Analyzes query
  2. References users table schema
  3. Generates SQL:

SELECT * FROM users

WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 MONTH)

  1. Returns parameterized query

```

Example 2: Complex Query

```

User: "Calculate total revenue by product for Q4"

Text-to-SQL:

  1. Analyzes query
  2. References orders and products tables
  3. Generates SQL:

SELECT p.name, SUM(o.total) as revenue

FROM orders o

JOIN products p ON o.product_id = p.id

WHERE o.created_at >= '2024-10-01'

AND o.created_at < '2025-01-01'

GROUP BY p.id, p.name

  1. Returns optimized query

```

Evaluation

Evaluation Framework

Based on Claude Cookbooks patterns, text-to-SQL evaluation includes:

Syntax Validation:

  • SQL syntax correctness
  • Schema compliance
  • Query structure validation

Functional Testing:

  • Query execution on test database
  • Result correctness
  • Performance validation

Promptfoo Integration:

  • Multiple prompt variants (basic, few-shot, chain-of-thought, RAG)
  • Temperature sweeps
  • Model comparisons (Haiku vs Sonnet)

Evaluation Configuration:

Create a promptfoo config file for your evaluation setup (e.g., text_to_sql_config.yaml).

Running Evaluations

```bash

# Run text-to-SQL evaluation (create config first)

npx promptfoo@latest eval -c text_to_sql_config.yaml

```

Evaluation Metrics

  • Syntax Accuracy: Percentage of queries with valid SQL syntax
  • Functional Correctness: Percentage of queries returning correct results
  • Schema Compliance: Percentage of queries using correct schema
  • Performance: Query execution time and optimization

Best Practices from Cookbooks

1. Provide Schema Context

Always include complete database schema:

  • Table definitions with column types
  • Relationships and foreign keys
  • Constraints and indexes
  • Sample data patterns

2. Use Few-Shot Examples

Provide examples of similar queries:

  • Simple queries
  • Complex queries with joins
  • Aggregation queries
  • Subquery patterns

3. Chain-of-Thought for Complex Queries

For complex queries, use chain-of-thought reasoning:

  • Break down query into steps
  • Identify required tables
  • Plan joins and aggregations
  • Generate SQL step by step

4. RAG for Schema Understanding

Use RAG to retrieve relevant schema information:

  • Find relevant tables for query
  • Understand relationships
  • Get column details
  • Retrieve query patterns

Related Skills

  • classifier: Classify database queries
  • database-architect: Use for schema design
  • developer: Generate query code

Related Documentation

  • [Classification Patterns](../docs/CLASSIFICATION_PATTERNS.md) - Classification guide
  • [Evaluation Guide](../docs/EVALUATION_GUIDE.md) - Comprehensive evaluation
  • [Claude Cookbooks - Text-to-SQL](https://github.com/anthropics/anthropic-cookbook/tree/main/capabilities/text_to_sql)