1. Data Structure
Understand the AnnData object structure including X, obs, var, layers, obsm, varm, obsp, varp, uns, and raw components.
See: references/data_structure.md for comprehensive information on:
- Core components (X, obs, var, layers, obsm, varm, obsp, varp, uns, raw)
- Creating AnnData objects from various sources
- Accessing and manipulating data components
- Memory-efficient practices
2. Input/Output Operations
Read and write data in various formats with support for compression, backed mode, and cloud storage.
See: references/io_operations.md for details on:
- Native formats (h5ad, zarr)
- Alternative formats (CSV, MTX, Loom, 10X, Excel)
- Backed mode for large datasets
- Remote data access
- Format conversion
- Performance optimization
Common commands:
```python
# Read/write h5ad
adata = ad.read_h5ad('data.h5ad', backed='r')
adata.write_h5ad('output.h5ad', compression='gzip')
# Read 10X data
adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')
# Read MTX format
adata = ad.read_mtx('matrix.mtx').T
```
3. Concatenation
Combine multiple AnnData objects along observations or variables with flexible join strategies.
See: references/concatenation.md for comprehensive coverage of:
- Basic concatenation (axis=0 for observations, axis=1 for variables)
- Join types (inner, outer)
- Merge strategies (same, unique, first, only)
- Tracking data sources with labels
- Lazy concatenation (AnnCollection)
- On-disk concatenation for large datasets
Common commands:
```python
# Concatenate observations (combine samples)
adata = ad.concat(
[adata1, adata2, adata3],
axis=0,
join='inner',
label='batch',
keys=['batch1', 'batch2', 'batch3']
)
# Concatenate variables (combine modalities)
adata = ad.concat([adata_rna, adata_protein], axis=1)
# Lazy concatenation
from anndata.experimental import AnnCollection
collection = AnnCollection(
['data1.h5ad', 'data2.h5ad'],
join_obs='outer',
label='dataset'
)
```
4. Data Manipulation
Transform, subset, filter, and reorganize data efficiently.
See: references/manipulation.md for detailed guidance on:
- Subsetting (by indices, names, boolean masks, metadata conditions)
- Transposition
- Copying (full copies vs views)
- Renaming (observations, variables, categories)
- Type conversions (strings to categoricals, sparse/dense)
- Adding/removing data components
- Reordering
- Quality control filtering
Common commands:
```python
# Subset by metadata
filtered = adata[adata.obs['quality_score'] > 0.8]
hv_genes = adata[:, adata.var['highly_variable']]
# Transpose
adata_T = adata.T
# Copy vs view
view = adata[0:100, :] # View (lightweight reference)
copy = adata[0:100, :].copy() # Independent copy
# Convert strings to categoricals
adata.strings_to_categoricals()
```
5. Best Practices
Follow recommended patterns for memory efficiency, performance, and reproducibility.
See: references/best_practices.md for guidelines on:
- Memory management (sparse matrices, categoricals, backed mode)
- Views vs copies
- Data storage optimization
- Performance optimization
- Working with raw data
- Metadata management
- Reproducibility
- Error handling
- Integration with other tools
- Common pitfalls and solutions
Key recommendations:
```python
# Use sparse matrices for sparse data
from scipy.sparse import csr_matrix
adata.X = csr_matrix(adata.X)
# Convert strings to categoricals
adata.strings_to_categoricals()
# Use backed mode for large files
adata = ad.read_h5ad('large.h5ad', backed='r')
# Store raw before filtering
adata.raw = adata.copy()
adata = adata[:, adata.var['highly_variable']]
```