1. Protein Analysis
Retrieve protein information, sequences, and functional annotations:
```python
from bioservices import UniProt
u = UniProt(verbose=False)
# Search for protein by name
results = u.search("ZAP70_HUMAN", frmt="tab", columns="id,genes,organism")
# Retrieve FASTA sequence
sequence = u.retrieve("P43403", "fasta")
# Map identifiers between databases
kegg_ids = u.mapping(fr="UniProtKB_AC-ID", to="KEGG", query="P43403")
```
Key methods:
search(): Query UniProt with flexible search termsretrieve(): Get protein entries in various formats (FASTA, XML, tab)mapping(): Convert identifiers between databases
Reference: references/services_reference.md for complete UniProt API details.
2. Pathway Discovery and Analysis
Access KEGG pathway information for genes and organisms:
```python
from bioservices import KEGG
k = KEGG()
k.organism = "hsa" # Set to human
# Search for organisms
k.lookfor_organism("droso") # Find Drosophila species
# Find pathways by name
k.lookfor_pathway("B cell") # Returns matching pathway IDs
# Get pathways containing specific genes
pathways = k.get_pathway_by_gene("7535", "hsa") # ZAP70 gene
# Retrieve and parse pathway data
data = k.get("hsa04660")
parsed = k.parse(data)
# Extract pathway interactions
interactions = k.parse_kgml_pathway("hsa04660")
relations = interactions['relations'] # Protein-protein interactions
# Convert to Simple Interaction Format
sif_data = k.pathway2sif("hsa04660")
```
Key methods:
lookfor_organism(), lookfor_pathway(): Search by nameget_pathway_by_gene(): Find pathways containing genesparse_kgml_pathway(): Extract structured pathway datapathway2sif(): Get protein interaction networks
Reference: references/workflow_patterns.md for complete pathway analysis workflows.
3. Compound Database Searches
Search and cross-reference compounds across multiple databases:
```python
from bioservices import KEGG, UniChem
k = KEGG()
# Search compounds by name
results = k.find("compound", "Geldanamycin") # Returns cpd:C11222
# Get compound information with database links
compound_info = k.get("cpd:C11222") # Includes ChEBI links
# Cross-reference KEGG β ChEMBL using UniChem
u = UniChem()
chembl_id = u.get_compound_id_from_kegg("C11222") # Returns CHEMBL278315
```
Common workflow:
- Search compound by name in KEGG
- Extract KEGG compound ID
- Use UniChem for KEGG β ChEMBL mapping
- ChEBI IDs are often provided in KEGG entries
Reference: references/identifier_mapping.md for complete cross-database mapping guide.
4. Sequence Analysis
Run BLAST searches and sequence alignments:
```python
from bioservices import NCBIblast
s = NCBIblast(verbose=False)
# Run BLASTP against UniProtKB
jobid = s.run(
program="blastp",
sequence=protein_sequence,
stype="protein",
database="uniprotkb",
email="your.email@example.com" # Required by NCBI
)
# Check job status and retrieve results
s.getStatus(jobid)
results = s.getResult(jobid, "out")
```
Note: BLAST jobs are asynchronous. Check status before retrieving results.
5. Identifier Mapping
Convert identifiers between different biological databases:
```python
from bioservices import UniProt, KEGG
# UniProt mapping (many database pairs supported)
u = UniProt()
results = u.mapping(
fr="UniProtKB_AC-ID", # Source database
to="KEGG", # Target database
query="P43403" # Identifier(s) to convert
)
# KEGG gene ID β UniProt
kegg_to_uniprot = u.mapping(fr="KEGG", to="UniProtKB_AC-ID", query="hsa:7535")
# For compounds, use UniChem
from bioservices import UniChem
u = UniChem()
chembl_from_kegg = u.get_compound_id_from_kegg("C11222")
```
Supported mappings (UniProt):
- UniProtKB β KEGG
- UniProtKB β Ensembl
- UniProtKB β PDB
- UniProtKB β RefSeq
- And many more (see
references/identifier_mapping.md)
6. Gene Ontology Queries
Access GO terms and annotations:
```python
from bioservices import QuickGO
g = QuickGO(verbose=False)
# Retrieve GO term information
term_info = g.Term("GO:0003824", frmt="obo")
# Search annotations
annotations = g.Annotation(protein="P43403", format="tsv")
```
7. Protein-Protein Interactions
Query interaction databases via PSICQUIC:
```python
from bioservices import PSICQUIC
s = PSICQUIC(verbose=False)
# Query specific database (e.g., MINT)
interactions = s.query("mint", "ZAP70 AND species:9606")
# List available interaction databases
databases = s.activeDBs
```
Available databases: MINT, IntAct, BioGRID, DIP, and 30+ others.