1. Data Access and Authentication
Download and access DrugBank data using Python with proper authentication. The skill provides guidance on:
- Installing and configuring the
drugbank-downloader package - Managing credentials securely via environment variables or config files
- Downloading specific or latest database versions
- Opening and parsing XML data efficiently
- Working with cached data to optimize performance
When to use: Setting up DrugBank access, downloading database updates, initial project configuration.
Reference: See references/data-access.md for detailed authentication, download procedures, API access, caching strategies, and troubleshooting.
2. Drug Information Queries
Extract comprehensive drug information from the database including identifiers, chemical properties, pharmacology, clinical data, and cross-references to external databases.
Query capabilities:
- Search by DrugBank ID, name, CAS number, or keywords
- Extract basic drug information (name, type, description, indication)
- Retrieve chemical properties (SMILES, InChI, molecular formula)
- Get pharmacology data (mechanism of action, pharmacodynamics, ADME)
- Access external identifiers (PubChem, ChEMBL, UniProt, KEGG)
- Build searchable drug datasets and export to DataFrames
- Filter drugs by type (small molecule, biotech, nutraceutical)
When to use: Retrieving specific drug information, building drug databases, pharmacology research, literature review, drug profiling.
Reference: See references/drug-queries.md for XML navigation, query functions, data extraction methods, and performance optimization.
3. Drug-Drug Interactions Analysis
Analyze drug-drug interactions (DDIs) including mechanism, clinical significance, and interaction networks for pharmacovigilance and clinical decision support.
Analysis capabilities:
- Extract all interactions for specific drugs
- Build bidirectional interaction networks
- Classify interactions by severity and mechanism
- Check interactions between drug pairs
- Identify drugs with most interactions
- Analyze polypharmacy regimens for safety
- Create interaction matrices and network graphs
- Perform community detection in interaction networks
- Calculate interaction risk scores
When to use: Polypharmacy safety analysis, clinical decision support, drug interaction prediction, pharmacovigilance research, identifying contraindications.
Reference: See references/interactions.md for interaction extraction, classification methods, network analysis, and clinical applications.
4. Drug Targets and Pathways
Access detailed information about drug-protein interactions including targets, enzymes, transporters, carriers, and biological pathways.
Target analysis capabilities:
- Extract drug targets with actions (inhibitor, agonist, antagonist)
- Identify metabolic enzymes (CYP450, Phase II enzymes)
- Analyze transporters (uptake, efflux) for ADME studies
- Map drugs to biological pathways (SMPDB)
- Find drugs targeting specific proteins
- Identify drugs with shared targets for repurposing
- Analyze polypharmacology and off-target effects
- Extract Gene Ontology (GO) terms for targets
- Cross-reference with UniProt for protein data
When to use: Mechanism of action studies, drug repurposing research, target identification, pathway analysis, predicting off-target effects, understanding drug metabolism.
Reference: See references/targets-pathways.md for target extraction, pathway analysis, repurposing strategies, CYP450 profiling, and transporter analysis.
5. Chemical Properties and Similarity
Perform structure-based analysis including molecular similarity searches, property calculations, substructure searches, and ADMET predictions.
Chemical analysis capabilities:
- Extract chemical structures (SMILES, InChI, molecular formula)
- Calculate physicochemical properties (MW, logP, PSA, H-bonds)
- Apply Lipinski's Rule of Five and Veber's rules
- Calculate Tanimoto similarity between molecules
- Generate molecular fingerprints (Morgan, MACCS, topological)
- Perform substructure searches with SMARTS patterns
- Find structurally similar drugs for repurposing
- Create similarity matrices for drug clustering
- Predict oral absorption and BBB permeability
- Analyze chemical space with PCA and clustering
- Export chemical property databases
When to use: Structure-activity relationship (SAR) studies, drug similarity searches, QSAR modeling, drug-likeness assessment, ADMET prediction, chemical space exploration.
Reference: See references/chemical-analysis.md for structure extraction, similarity calculations, fingerprint generation, ADMET predictions, and chemical space analysis.