🎯

fda-database

🎯Skill

from ovachiever/droid-tings

VibeIndex|
What it does

Queries the openFDA API to retrieve comprehensive regulatory data on drugs, devices, adverse events, recalls, and substances for research and analysis.

πŸ“¦

Part of

ovachiever/droid-tings(370 items)

fda-database

Installation

PythonRun Python server
python scripts/fda_examples.py
πŸ“– Extracted from docs: ovachiever/droid-tings
16Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

"Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research."

Overview

# FDA Database Access

Overview

Access comprehensive FDA regulatory data through openFDA, the FDA's initiative to provide open APIs for public datasets. Query information about drugs, medical devices, foods, animal/veterinary products, and substances using Python with standardized interfaces.

Key capabilities:

  • Query adverse events for drugs, devices, foods, and veterinary products
  • Access product labeling, approvals, and regulatory submissions
  • Monitor recalls and enforcement actions
  • Look up National Drug Codes (NDC) and substance identifiers (UNII)
  • Analyze device classifications and clearances (510k, PMA)
  • Track drug shortages and supply issues
  • Research chemical structures and substance relationships

When to Use This Skill

This skill should be used when working with:

  • Drug research: Safety profiles, adverse events, labeling, approvals, shortages
  • Medical device surveillance: Adverse events, recalls, 510(k) clearances, PMA approvals
  • Food safety: Recalls, allergen tracking, adverse events, dietary supplements
  • Veterinary medicine: Animal drug adverse events by species and breed
  • Chemical/substance data: UNII lookup, CAS number mapping, molecular structures
  • Regulatory analysis: Approval pathways, enforcement actions, compliance tracking
  • Pharmacovigilance: Post-market surveillance, safety signal detection
  • Scientific research: Drug interactions, comparative safety, epidemiological studies

Quick Start

1. Basic Setup

```python

from scripts.fda_query import FDAQuery

# Initialize (API key optional but recommended)

fda = FDAQuery(api_key="YOUR_API_KEY")

# Query drug adverse events

events = fda.query_drug_events("aspirin", limit=100)

# Get drug labeling

label = fda.query_drug_label("Lipitor", brand=True)

# Search device recalls

recalls = fda.query("device", "enforcement",

search="classification:Class+I",

limit=50)

```

2. API Key Setup

While the API works without a key, registering provides higher rate limits:

  • Without key: 240 requests/min, 1,000/day
  • With key: 240 requests/min, 120,000/day

Register at: https://open.fda.gov/apis/authentication/

Set as environment variable:

```bash

export FDA_API_KEY="your_key_here"

```

3. Running Examples

```bash

# Run comprehensive examples

python scripts/fda_examples.py

# This demonstrates:

# - Drug safety profiles

# - Device surveillance

# - Food recall monitoring

# - Substance lookup

# - Comparative drug analysis

# - Veterinary drug analysis

```

FDA Database Categories

Drugs

Access 6 drug-related endpoints covering the full drug lifecycle from approval to post-market surveillance.

Endpoints:

  1. Adverse Events - Reports of side effects, errors, and therapeutic failures
  2. Product Labeling - Prescribing information, warnings, indications
  3. NDC Directory - National Drug Code product information
  4. Enforcement Reports - Drug recalls and safety actions
  5. Drugs@FDA - Historical approval data since 1939
  6. Drug Shortages - Current and resolved supply issues

Common use cases:

```python

# Safety signal detection

fda.count_by_field("drug", "event",

search="patient.drug.medicinalproduct:metformin",

field="patient.reaction.reactionmeddrapt")

# Get prescribing information

label = fda.query_drug_label("Keytruda", brand=True)

# Check for recalls

recalls = fda.query_drug_recalls(drug_name="metformin")

# Monitor shortages

shortages = fda.query("drug", "drugshortages",

search="status:Currently+in+Shortage")

```

Reference: See references/drugs.md for detailed documentation

Devices

Access 9 device-related endpoints covering medical device safety, approvals, and registrations.

Endpoints:

  1. Adverse Events - Device malfunctions, injuries, deaths
  2. 510(k) Clearances - Premarket notifications
  3. Classification - Device categories and risk classes
  4. Enforcement Reports - Device recalls
  5. Recalls - Detailed recall information
  6. PMA - Premarket approval data for Class III devices
  7. Registrations & Listings - Manufacturing facility data
  8. UDI - Unique Device Identification database
  9. COVID-19 Serology - Antibody test performance data

Common use cases:

```python

# Monitor device safety

events = fda.query_device_events("pacemaker", limit=100)

# Look up device classification

classification = fda.query_device_classification("DQY")

# Find 510(k) clearances

clearances = fda.query_device_510k(applicant="Medtronic")

# Search by UDI

device_info = fda.query("device", "udi",

search="identifiers.id:00884838003019")

```

Reference: See references/devices.md for detailed documentation

Foods

Access 2 food-related endpoints for safety monitoring and recalls.

Endpoints:

  1. Adverse Events - Food, dietary supplement, and cosmetic events
  2. Enforcement Reports - Food product recalls

Common use cases:

```python

# Monitor allergen recalls

recalls = fda.query_food_recalls(reason="undeclared peanut")

# Track dietary supplement events

events = fda.query_food_events(

industry="Dietary Supplements")

# Find contamination recalls

listeria = fda.query_food_recalls(

reason="listeria",

classification="I")

```

Reference: See references/foods.md for detailed documentation

Animal & Veterinary

Access veterinary drug adverse event data with species-specific information.

Endpoint:

  1. Adverse Events - Animal drug side effects by species, breed, and product

Common use cases:

```python

# Species-specific events

dog_events = fda.query_animal_events(

species="Dog",

drug_name="flea collar")

# Breed predisposition analysis

breed_query = fda.query("animalandveterinary", "event",

search="reaction.veddra_term_name:seizure+AND+"

"animal.breed.breed_component:Labrador")

```

Reference: See references/animal_veterinary.md for detailed documentation

Substances & Other

Access molecular-level substance data with UNII codes, chemical structures, and relationships.

Endpoints:

  1. Substance Data - UNII, CAS, chemical structures, relationships
  2. NSDE - Historical substance data (legacy)

Common use cases:

```python

# UNII to CAS mapping

substance = fda.query_substance_by_unii("R16CO5Y76E")

# Search by name

results = fda.query_substance_by_name("acetaminophen")

# Get chemical structure

structure = fda.query("other", "substance",

search="names.name:ibuprofen+AND+substanceClass:chemical")

```

Reference: See references/other.md for detailed documentation

Common Query Patterns

Pattern 1: Safety Profile Analysis

Create comprehensive safety profiles combining multiple data sources:

```python

def drug_safety_profile(fda, drug_name):

"""Generate complete safety profile."""

# 1. Total adverse events

events = fda.query_drug_events(drug_name, limit=1)

total = events["meta"]["results"]["total"]

# 2. Most common reactions

reactions = fda.count_by_field(

"drug", "event",

search=f"patient.drug.medicinalproduct:{drug_name}",

field="patient.reaction.reactionmeddrapt",

exact=True

)

# 3. Serious events

serious = fda.query("drug", "event",

search=f"patient.drug.medicinalproduct:{drug_name}+AND+serious:1",

limit=1)

# 4. Recent recalls

recalls = fda.query_drug_recalls(drug_name=drug_name)

return {

"total_events": total,

"top_reactions": reactions["results"][:10],

"serious_events": serious["meta"]["results"]["total"],

"recalls": recalls["results"]

}

```

Pattern 2: Temporal Trend Analysis

Analyze trends over time using date ranges:

```python

from datetime import datetime, timedelta

def get_monthly_trends(fda, drug_name, months=12):

"""Get monthly adverse event trends."""

trends = []

for i in range(months):

end = datetime.now() - timedelta(days=30*i)

start = end - timedelta(days=30)

date_range = f"[{start.strftime('%Y%m%d')}+TO+{end.strftime('%Y%m%d')}]"

search = f"patient.drug.medicinalproduct:{drug_name}+AND+receivedate:{date_range}"

result = fda.query("drug", "event", search=search, limit=1)

count = result["meta"]["results"]["total"] if "meta" in result else 0

trends.append({

"month": start.strftime("%Y-%m"),

"events": count

})

return trends

```

Pattern 3: Comparative Analysis

Compare multiple products side-by-side:

```python

def compare_drugs(fda, drug_list):

"""Compare safety profiles of multiple drugs."""

comparison = {}

for drug in drug_list:

# Total events

events = fda.query_drug_events(drug, limit=1)

total = events["meta"]["results"]["total"] if "meta" in events else 0

# Serious events

serious = fda.query("drug", "event",

search=f"patient.drug.medicinalproduct:{drug}+AND+serious:1",

limit=1)

serious_count = serious["meta"]["results"]["total"] if "meta" in serious else 0

comparison[drug] = {

"total_events": total,

"serious_events": serious_count,

"serious_rate": (serious_count/total*100) if total > 0 else 0

}

return comparison

```

Pattern 4: Cross-Database Lookup

Link data across multiple endpoints:

```python

def comprehensive_device_lookup(fda, device_name):

"""Look up device across all relevant databases."""

return {

"adverse_events": fda.query_device_events(device_name, limit=10),

"510k_clearances": fda.query_device_510k(device_name=device_name),

"recalls": fda.query("device", "enforcement",

search=f"product_description:{device_name}"),

"udi_info": fda.query("device", "udi",

search=f"brand_name:{device_name}")

}

```

Working with Results

Response Structure

All API responses follow this structure:

```python

{

"meta": {

"disclaimer": "...",

"results": {

"skip": 0,

"limit": 100,

"total": 15234

}

},

"results": [

# Array of result objects

]

}

```

Error Handling

Always handle potential errors:

```python

result = fda.query_drug_events("aspirin", limit=10)

if "error" in result:

print(f"Error: {result['error']}")

elif "results" not in result or len(result["results"]) == 0:

print("No results found")

else:

# Process results

for event in result["results"]:

# Handle event data

pass

```

Pagination

For large result sets, use pagination:

```python

# Automatic pagination

all_results = fda.query_all(

"drug", "event",

search="patient.drug.medicinalproduct:aspirin",

max_results=5000

)

# Manual pagination

for skip in range(0, 1000, 100):

batch = fda.query("drug", "event",

search="...",

limit=100,

skip=skip)

# Process batch

```

Best Practices

1. Use Specific Searches

DO:

```python

# Specific field search

search="patient.drug.medicinalproduct:aspirin"

```

DON'T:

```python

# Overly broad wildcard

search="aspirin"

```

2. Implement Rate Limiting

The FDAQuery class handles rate limiting automatically, but be aware of limits:

  • 240 requests per minute
  • 120,000 requests per day (with API key)

3. Cache Frequently Accessed Data

The FDAQuery class includes built-in caching (enabled by default):

```python

# Caching is automatic

fda = FDAQuery(api_key=api_key, use_cache=True, cache_ttl=3600)

```

4. Use Exact Matching for Counting

When counting/aggregating, use .exact suffix:

```python

# Count exact phrases

fda.count_by_field("drug", "event",

search="...",

field="patient.reaction.reactionmeddrapt",

exact=True) # Adds .exact automatically

```

5. Validate Input Data

Clean and validate search terms:

```python

def clean_drug_name(name):

"""Clean drug name for query."""

return name.strip().replace('"', '\\"')

drug_name = clean_drug_name(user_input)

```

API Reference

For detailed information about:

  • Authentication and rate limits β†’ See references/api_basics.md
  • Drug databases β†’ See references/drugs.md
  • Device databases β†’ See references/devices.md
  • Food databases β†’ See references/foods.md
  • Animal/veterinary databases β†’ See references/animal_veterinary.md
  • Substance databases β†’ See references/other.md

Scripts

`scripts/fda_query.py`

Main query module with FDAQuery class providing:

  • Unified interface to all FDA endpoints
  • Automatic rate limiting and caching
  • Error handling and retry logic
  • Common query patterns

`scripts/fda_examples.py`

Comprehensive examples demonstrating:

  • Drug safety profile analysis
  • Device surveillance monitoring
  • Food recall tracking
  • Substance lookup
  • Comparative drug analysis
  • Veterinary drug analysis

Run examples:

```bash

python scripts/fda_examples.py

```

Additional Resources

  • openFDA Homepage: https://open.fda.gov/
  • API Documentation: https://open.fda.gov/apis/
  • Interactive API Explorer: https://open.fda.gov/apis/try-the-api/
  • GitHub Repository: https://github.com/FDA/openfda
  • Terms of Service: https://open.fda.gov/terms/

Support and Troubleshooting

Common Issues

Issue: Rate limit exceeded

  • Solution: Use API key, implement delays, or reduce request frequency

Issue: No results found

  • Solution: Try broader search terms, check spelling, use wildcards

Issue: Invalid query syntax

  • Solution: Review query syntax in references/api_basics.md

Issue: Missing fields in results

  • Solution: Not all records contain all fields; always check field existence

Getting Help

  • GitHub Issues: https://github.com/FDA/openfda/issues
  • Email: open-fda@fda.hhs.gov