๐ŸŽฏ

fluidsim

๐ŸŽฏSkill

from ovachiever/droid-tings

VibeIndex|
What it does

Enables high-performance computational fluid dynamics simulations in Python, solving complex fluid flow problems using advanced pseudospectral methods and parallel computing techniques.

๐Ÿ“ฆ

Part of

ovachiever/droid-tings(370 items)

fluidsim

Installation

git cloneClone repository
git clone https://github.com/ovachiever/droid-tings.git
๐Ÿ“– Extracted from docs: ovachiever/droid-tings
16Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Framework for computational fluid dynamics simulations using Python. Use when running fluid dynamics simulations including Navier-Stokes equations (2D/3D), shallow water equations, stratified flows, or when analyzing turbulence, vortex dynamics, or geophysical flows. Provides pseudospectral methods with FFT, HPC support, and comprehensive output analysis.

Overview

# FluidSim

Overview

FluidSim is an object-oriented Python framework for high-performance computational fluid dynamics (CFD) simulations. It provides solvers for periodic-domain equations using pseudospectral methods with FFT, delivering performance comparable to Fortran/C++ while maintaining Python's ease of use.

Key strengths:

  • Multiple solvers: 2D/3D Navier-Stokes, shallow water, stratified flows
  • High performance: Pythran/Transonic compilation, MPI parallelization
  • Complete workflow: Parameter configuration, simulation execution, output analysis
  • Interactive analysis: Python-based post-processing and visualization

Core Capabilities

1. Installation and Setup

Install fluidsim using uv with appropriate feature flags:

```bash

# Basic installation

uv uv pip install fluidsim

# With FFT support (required for most solvers)

uv uv pip install "fluidsim[fft]"

# With MPI for parallel computing

uv uv pip install "fluidsim[fft,mpi]"

```

Set environment variables for output directories (optional):

```bash

export FLUIDSIM_PATH=/path/to/simulation/outputs

export FLUIDDYN_PATH_SCRATCH=/path/to/working/directory

```

No API keys or authentication required.

See references/installation.md for complete installation instructions and environment configuration.

2. Running Simulations

Standard workflow consists of five steps:

Step 1: Import solver

```python

from fluidsim.solvers.ns2d.solver import Simul

```

Step 2: Create and configure parameters

```python

params = Simul.create_default_params()

params.oper.nx = params.oper.ny = 256

params.oper.Lx = params.oper.Ly = 2 * 3.14159

params.nu_2 = 1e-3

params.time_stepping.t_end = 10.0

params.init_fields.type = "noise"

```

Step 3: Instantiate simulation

```python

sim = Simul(params)

```

Step 4: Execute

```python

sim.time_stepping.start()

```

Step 5: Analyze results

```python

sim.output.phys_fields.plot("vorticity")

sim.output.spatial_means.plot()

```

See references/simulation_workflow.md for complete examples, restarting simulations, and cluster deployment.

3. Available Solvers

Choose solver based on physical problem:

2D Navier-Stokes (ns2d): 2D turbulence, vortex dynamics

```python

from fluidsim.solvers.ns2d.solver import Simul

```

3D Navier-Stokes (ns3d): 3D turbulence, realistic flows

```python

from fluidsim.solvers.ns3d.solver import Simul

```

Stratified flows (ns2d.strat, ns3d.strat): Oceanic/atmospheric flows

```python

from fluidsim.solvers.ns2d.strat.solver import Simul

params.N = 1.0 # Brunt-Vรคisรคlรค frequency

```

Shallow water (sw1l): Geophysical flows, rotating systems

```python

from fluidsim.solvers.sw1l.solver import Simul

params.f = 1.0 # Coriolis parameter

```

See references/solvers.md for complete solver list and selection guidance.

4. Parameter Configuration

Parameters are organized hierarchically and accessed via dot notation:

Domain and resolution:

```python

params.oper.nx = 256 # grid points

params.oper.Lx = 2 * pi # domain size

```

Physical parameters:

```python

params.nu_2 = 1e-3 # viscosity

params.nu_4 = 0 # hyperviscosity (optional)

```

Time stepping:

```python

params.time_stepping.t_end = 10.0

params.time_stepping.USE_CFL = True # adaptive time step

params.time_stepping.CFL = 0.5

```

Initial conditions:

```python

params.init_fields.type = "noise" # or "dipole", "vortex", "from_file", "in_script"

```

Output settings:

```python

params.output.periods_save.phys_fields = 1.0 # save every 1.0 time units

params.output.periods_save.spectra = 0.5

params.output.periods_save.spatial_means = 0.1

```

The Parameters object raises AttributeError for typos, preventing silent configuration errors.

See references/parameters.md for comprehensive parameter documentation.

5. Output and Analysis

FluidSim produces multiple output types automatically saved during simulation:

Physical fields: Velocity, vorticity in HDF5 format

```python

sim.output.phys_fields.plot("vorticity")

sim.output.phys_fields.plot("vx")

```

Spatial means: Time series of volume-averaged quantities

```python

sim.output.spatial_means.plot()

```

Spectra: Energy and enstrophy spectra

```python

sim.output.spectra.plot1d()

sim.output.spectra.plot2d()

```

Load previous simulations:

```python

from fluidsim import load_sim_for_plot

sim = load_sim_for_plot("simulation_dir")

sim.output.phys_fields.plot()

```

Advanced visualization: Open .h5 files in ParaView or VisIt for 3D visualization.

See references/output_analysis.md for detailed analysis workflows, parametric study analysis, and data export.

6. Advanced Features

Custom forcing: Maintain turbulence or drive specific dynamics

```python

params.forcing.enable = True

params.forcing.type = "tcrandom" # time-correlated random forcing

params.forcing.forcing_rate = 1.0

```

Custom initial conditions: Define fields in script

```python

params.init_fields.type = "in_script"

sim = Simul(params)

X, Y = sim.oper.get_XY_loc()

vx = sim.state.state_phys.get_var("vx")

vx[:] = sin(X) * cos(Y)

sim.time_stepping.start()

```

MPI parallelization: Run on multiple processors

```bash

mpirun -np 8 python simulation_script.py

```

Parametric studies: Run multiple simulations with different parameters

```python

for nu in [1e-3, 5e-4, 1e-4]:

params = Simul.create_default_params()

params.nu_2 = nu

params.output.sub_directory = f"nu{nu}"

sim = Simul(params)

sim.time_stepping.start()

```

See references/advanced_features.md for forcing types, custom solvers, cluster submission, and performance optimization.

Common Use Cases

2D Turbulence Study

```python

from fluidsim.solvers.ns2d.solver import Simul

from math import pi

params = Simul.create_default_params()

params.oper.nx = params.oper.ny = 512

params.oper.Lx = params.oper.Ly = 2 * pi

params.nu_2 = 1e-4

params.time_stepping.t_end = 50.0

params.time_stepping.USE_CFL = True

params.init_fields.type = "noise"

params.output.periods_save.phys_fields = 5.0

params.output.periods_save.spectra = 1.0

sim = Simul(params)

sim.time_stepping.start()

# Analyze energy cascade

sim.output.spectra.plot1d(tmin=30.0, tmax=50.0)

```

Stratified Flow Simulation

```python

from fluidsim.solvers.ns2d.strat.solver import Simul

params = Simul.create_default_params()

params.oper.nx = params.oper.ny = 256

params.N = 2.0 # stratification strength

params.nu_2 = 5e-4

params.time_stepping.t_end = 20.0

# Initialize with dense layer

params.init_fields.type = "in_script"

sim = Simul(params)

X, Y = sim.oper.get_XY_loc()

b = sim.state.state_phys.get_var("b")

b[:] = exp(-((X - 3.14)2 + (Y - 3.14)2) / 0.5)

sim.state.statephys_from_statespect()

sim.time_stepping.start()

sim.output.phys_fields.plot("b")

```

High-Resolution 3D Simulation with MPI

```python

from fluidsim.solvers.ns3d.solver import Simul

params = Simul.create_default_params()

params.oper.nx = params.oper.ny = params.oper.nz = 512

params.nu_2 = 1e-5

params.time_stepping.t_end = 10.0

params.init_fields.type = "noise"

sim = Simul(params)

sim.time_stepping.start()

```

Run with:

```bash

mpirun -np 64 python script.py

```

Taylor-Green Vortex Validation

```python

from fluidsim.solvers.ns2d.solver import Simul

import numpy as np

from math import pi

params = Simul.create_default_params()

params.oper.nx = params.oper.ny = 128

params.oper.Lx = params.oper.Ly = 2 * pi

params.nu_2 = 1e-3

params.time_stepping.t_end = 10.0

params.init_fields.type = "in_script"

sim = Simul(params)

X, Y = sim.oper.get_XY_loc()

vx = sim.state.state_phys.get_var("vx")

vy = sim.state.state_phys.get_var("vy")

vx[:] = np.sin(X) * np.cos(Y)

vy[:] = -np.cos(X) * np.sin(Y)

sim.state.statephys_from_statespect()

sim.time_stepping.start()

# Validate energy decay

df = sim.output.spatial_means.load()

# Compare with analytical solution

```

Quick Reference

Import solver: from fluidsim.solvers.ns2d.solver import Simul

Create parameters: params = Simul.create_default_params()

Set resolution: params.oper.nx = params.oper.ny = 256

Set viscosity: params.nu_2 = 1e-3

Set end time: params.time_stepping.t_end = 10.0

Run simulation: sim = Simul(params); sim.time_stepping.start()

Plot results: sim.output.phys_fields.plot("vorticity")

Load simulation: sim = load_sim_for_plot("path/to/sim")

Resources

Documentation: https://fluidsim.readthedocs.io/

Reference files:

  • references/installation.md: Complete installation instructions
  • references/solvers.md: Available solvers and selection guide
  • references/simulation_workflow.md: Detailed workflow examples
  • references/parameters.md: Comprehensive parameter documentation
  • references/output_analysis.md: Output types and analysis methods
  • references/advanced_features.md: Forcing, MPI, parametric studies, custom solvers