1. Graph Creation and Manipulation
NetworkX supports four main graph types:
- Graph: Undirected graphs with single edges
- DiGraph: Directed graphs with one-way connections
- MultiGraph: Undirected graphs allowing multiple edges between nodes
- MultiDiGraph: Directed graphs with multiple edges
Create graphs by:
```python
import networkx as nx
# Create empty graph
G = nx.Graph()
# Add nodes (can be any hashable type)
G.add_node(1)
G.add_nodes_from([2, 3, 4])
G.add_node("protein_A", type='enzyme', weight=1.5)
# Add edges
G.add_edge(1, 2)
G.add_edges_from([(1, 3), (2, 4)])
G.add_edge(1, 4, weight=0.8, relation='interacts')
```
Reference: See references/graph-basics.md for comprehensive guidance on creating, modifying, examining, and managing graph structures, including working with attributes and subgraphs.
2. Graph Algorithms
NetworkX provides extensive algorithms for network analysis:
Shortest Paths:
```python
# Find shortest path
path = nx.shortest_path(G, source=1, target=5)
length = nx.shortest_path_length(G, source=1, target=5, weight='weight')
```
Centrality Measures:
```python
# Degree centrality
degree_cent = nx.degree_centrality(G)
# Betweenness centrality
betweenness = nx.betweenness_centrality(G)
# PageRank
pagerank = nx.pagerank(G)
```
Community Detection:
```python
from networkx.algorithms import community
# Detect communities
communities = community.greedy_modularity_communities(G)
```
Connectivity:
```python
# Check connectivity
is_connected = nx.is_connected(G)
# Find connected components
components = list(nx.connected_components(G))
```
Reference: See references/algorithms.md for detailed documentation on all available algorithms including shortest paths, centrality measures, clustering, community detection, flows, matching, tree algorithms, and graph traversal.
3. Graph Generators
Create synthetic networks for testing, simulation, or modeling:
Classic Graphs:
```python
# Complete graph
G = nx.complete_graph(n=10)
# Cycle graph
G = nx.cycle_graph(n=20)
# Known graphs
G = nx.karate_club_graph()
G = nx.petersen_graph()
```
Random Networks:
```python
# Erdลs-Rรฉnyi random graph
G = nx.erdos_renyi_graph(n=100, p=0.1, seed=42)
# Barabรกsi-Albert scale-free network
G = nx.barabasi_albert_graph(n=100, m=3, seed=42)
# Watts-Strogatz small-world network
G = nx.watts_strogatz_graph(n=100, k=6, p=0.1, seed=42)
```
Structured Networks:
```python
# Grid graph
G = nx.grid_2d_graph(m=5, n=7)
# Random tree
G = nx.random_tree(n=100, seed=42)
```
Reference: See references/generators.md for comprehensive coverage of all graph generators including classic, random, lattice, bipartite, and specialized network models with detailed parameters and use cases.
4. Reading and Writing Graphs
NetworkX supports numerous file formats and data sources:
File Formats:
```python
# Edge list
G = nx.read_edgelist('graph.edgelist')
nx.write_edgelist(G, 'graph.edgelist')
# GraphML (preserves attributes)
G = nx.read_graphml('graph.graphml')
nx.write_graphml(G, 'graph.graphml')
# GML
G = nx.read_gml('graph.gml')
nx.write_gml(G, 'graph.gml')
# JSON
data = nx.node_link_data(G)
G = nx.node_link_graph(data)
```
Pandas Integration:
```python
import pandas as pd
# From DataFrame
df = pd.DataFrame({'source': [1, 2, 3], 'target': [2, 3, 4], 'weight': [0.5, 1.0, 0.75]})
G = nx.from_pandas_edgelist(df, 'source', 'target', edge_attr='weight')
# To DataFrame
df = nx.to_pandas_edgelist(G)
```
Matrix Formats:
```python
import numpy as np
# Adjacency matrix
A = nx.to_numpy_array(G)
G = nx.from_numpy_array(A)
# Sparse matrix
A = nx.to_scipy_sparse_array(G)
G = nx.from_scipy_sparse_array(A)
```
Reference: See references/io.md for complete documentation on all I/O formats including CSV, SQL databases, Cytoscape, DOT, and guidance on format selection for different use cases.
5. Visualization
Create clear and informative network visualizations:
Basic Visualization:
```python
import matplotlib.pyplot as plt
# Simple draw
nx.draw(G, with_labels=True)
plt.show()
# With layout
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500)
plt.show()
```
Customization:
```python
# Color by degree
node_colors = [G.degree(n) for n in G.nodes()]
nx.draw(G, node_color=node_colors, cmap=plt.cm.viridis)
# Size by centrality
centrality = nx.betweenness_centrality(G)
node_sizes = [3000 * centrality[n] for n in G.nodes()]
nx.draw(G, node_size=node_sizes)
# Edge weights
edge_widths = [3 * G[u][v].get('weight', 1) for u, v in G.edges()]
nx.draw(G, width=edge_widths)
```
Layout Algorithms:
```python
# Spring layout (force-directed)
pos = nx.spring_layout(G, seed=42)
# Circular layout
pos = nx.circular_layout(G)
# Kamada-Kawai layout
pos = nx.kamada_kawai_layout(G)
# Spectral layout
pos = nx.spectral_layout(G)
```
Publication Quality:
```python
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos, node_color='lightblue', node_size=500,
edge_color='gray', with_labels=True, font_size=10)
plt.title('Network Visualization', fontsize=16)
plt.axis('off')
plt.tight_layout()
plt.savefig('network.png', dpi=300, bbox_inches='tight')
plt.savefig('network.pdf', bbox_inches='tight') # Vector format
```
Reference: See references/visualization.md for extensive documentation on visualization techniques including layout algorithms, customization options, interactive visualizations with Plotly and PyVis, 3D networks, and publication-quality figure creation.