pytdc
π―Skillfrom ovachiever/droid-tings
Provides AI-ready drug discovery datasets, benchmarks, and molecular oracles for therapeutic machine learning and pharmacological prediction tasks.
Part of
ovachiever/droid-tings(370 items)
Installation
git clone https://github.com/ovachiever/droid-tings.gitSkill Details
"Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction."
Overview
# PyTDC (Therapeutics Data Commons)
Overview
PyTDC is an open-science platform providing AI-ready datasets and benchmarks for drug discovery and development. Access curated datasets spanning the entire therapeutics pipeline with standardized evaluation metrics and meaningful data splits, organized into three categories: single-instance prediction (molecular/protein properties), multi-instance prediction (drug-target interactions, DDI), and generation (molecule generation, retrosynthesis).
When to Use This Skill
This skill should be used when:
- Working with drug discovery or therapeutic ML datasets
- Benchmarking machine learning models on standardized pharmaceutical tasks
- Predicting molecular properties (ADME, toxicity, bioactivity)
- Predicting drug-target or drug-drug interactions
- Generating novel molecules with desired properties
- Accessing curated datasets with proper train/test splits (scaffold, cold-split)
- Using molecular oracles for property optimization
Installation & Setup
Install PyTDC using pip:
```bash
uv pip install PyTDC
```
To upgrade to the latest version:
```bash
uv pip install PyTDC --upgrade
```
Core dependencies (automatically installed):
- numpy, pandas, tqdm, seaborn, scikit_learn, fuzzywuzzy
Additional packages are installed automatically as needed for specific features.
Quick Start
The basic pattern for accessing any TDC dataset follows this structure:
```python
from tdc.
data =
split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2])
df = data.get_data(format='df')
```
Where:
: One ofsingle_pred,multi_pred, orgeneration: Specific task category (e.g., ADME, DTI, MolGen): Dataset name within that task
Example - Loading ADME data:
```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang')
split = data.get_split(method='scaffold')
# Returns dict with 'train', 'valid', 'test' DataFrames
```
Single-Instance Prediction Tasks
Single-instance prediction involves forecasting properties of individual biomedical entities (molecules, proteins, etc.).
Available Task Categories
#### 1. ADME (Absorption, Distribution, Metabolism, Excretion)
Predict pharmacokinetic properties of drug molecules.
```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang') # Intestinal permeability
# Other datasets: HIA_Hou, Bioavailability_Ma, Lipophilicity_AstraZeneca, etc.
```
Common ADME datasets:
- Caco2 - Intestinal permeability
- HIA - Human intestinal absorption
- Bioavailability - Oral bioavailability
- Lipophilicity - Octanol-water partition coefficient
- Solubility - Aqueous solubility
- BBB - Blood-brain barrier penetration
- CYP - Cytochrome P450 metabolism
#### 2. Toxicity (Tox)
Predict toxicity and adverse effects of compounds.
```python
from tdc.single_pred import Tox
data = Tox(name='hERG') # Cardiotoxicity
# Other datasets: AMES, DILI, Carcinogens_Lagunin, etc.
```
Common toxicity datasets:
- hERG - Cardiac toxicity
- AMES - Mutagenicity
- DILI - Drug-induced liver injury
- Carcinogens - Carcinogenicity
- ClinTox - Clinical trial toxicity
#### 3. HTS (High-Throughput Screening)
Bioactivity predictions from screening data.
```python
from tdc.single_pred import HTS
data = HTS(name='SARSCoV2_Vitro_Touret')
```
#### 4. QM (Quantum Mechanics)
Quantum mechanical properties of molecules.
```python
from tdc.single_pred import QM
data = QM(name='QM7')
```
#### 5. Other Single Prediction Tasks
- Yields: Chemical reaction yield prediction
- Epitope: Epitope prediction for biologics
- Develop: Development-stage predictions
- CRISPROutcome: Gene editing outcome prediction
Data Format
Single prediction datasets typically return DataFrames with columns:
Drug_IDorCompound_ID: Unique identifierDrugorX: SMILES string or molecular representationY: Target label (continuous or binary)
Multi-Instance Prediction Tasks
Multi-instance prediction involves forecasting properties of interactions between multiple biomedical entities.
Available Task Categories
#### 1. DTI (Drug-Target Interaction)
Predict binding affinity between drugs and protein targets.
```python
from tdc.multi_pred import DTI
data = DTI(name='BindingDB_Kd')
split = data.get_split()
```
Available datasets:
- BindingDB_Kd - Dissociation constant (52,284 pairs)
- BindingDB_IC50 - Half-maximal inhibitory concentration (991,486 pairs)
- BindingDB_Ki - Inhibition constant (375,032 pairs)
- DAVIS, KIBA - Kinase binding datasets
Data format: Drug_ID, Target_ID, Drug (SMILES), Target (sequence), Y (binding affinity)
#### 2. DDI (Drug-Drug Interaction)
Predict interactions between drug pairs.
```python
from tdc.multi_pred import DDI
data = DDI(name='DrugBank')
split = data.get_split()
```
Multi-class classification task predicting interaction types. Dataset contains 191,808 DDI pairs with 1,706 drugs.
#### 3. PPI (Protein-Protein Interaction)
Predict protein-protein interactions.
```python
from tdc.multi_pred import PPI
data = PPI(name='HuRI')
```
#### 4. Other Multi-Prediction Tasks
- GDA: Gene-disease associations
- DrugRes: Drug resistance prediction
- DrugSyn: Drug synergy prediction
- PeptideMHC: Peptide-MHC binding
- AntibodyAff: Antibody affinity prediction
- MTI: miRNA-target interactions
- Catalyst: Catalyst prediction
- TrialOutcome: Clinical trial outcome prediction
Generation Tasks
Generation tasks involve creating novel biomedical entities with desired properties.
1. Molecular Generation (MolGen)
Generate diverse, novel molecules with desirable chemical properties.
```python
from tdc.generation import MolGen
data = MolGen(name='ChEMBL_V29')
split = data.get_split()
```
Use with oracles to optimize for specific properties:
```python
from tdc import Oracle
oracle = Oracle(name='GSK3B')
score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O') # Evaluate SMILES
```
See references/oracles.md for all available oracle functions.
2. Retrosynthesis (RetroSyn)
Predict reactants needed to synthesize a target molecule.
```python
from tdc.generation import RetroSyn
data = RetroSyn(name='USPTO')
split = data.get_split()
```
Dataset contains 1,939,253 reactions from USPTO database.
3. Paired Molecule Generation
Generate molecule pairs (e.g., prodrug-drug pairs).
```python
from tdc.generation import PairMolGen
data = PairMolGen(name='Prodrug')
```
For detailed oracle documentation and molecular generation workflows, refer to references/oracles.md and scripts/molecular_generation.py.
Benchmark Groups
Benchmark groups provide curated collections of related datasets for systematic model evaluation.
ADMET Benchmark Group
```python
from tdc.benchmark_group import admet_group
group = admet_group(path='data/')
# Get benchmark datasets
benchmark = group.get('Caco2_Wang')
predictions = {}
for seed in [1, 2, 3, 4, 5]:
train, valid = benchmark['train'], benchmark['valid']
# Train model here
predictions[seed] = model.predict(benchmark['test'])
# Evaluate with required 5 seeds
results = group.evaluate(predictions)
```
ADMET Group includes 22 datasets covering absorption, distribution, metabolism, excretion, and toxicity.
Other Benchmark Groups
Available benchmark groups include collections for:
- ADMET properties
- Drug-target interactions
- Drug combination prediction
- And more specialized therapeutic tasks
For benchmark evaluation workflows, see scripts/benchmark_evaluation.py.
Data Functions
TDC provides comprehensive data processing utilities organized into four categories.
1. Dataset Splits
Retrieve train/validation/test partitions with various strategies:
```python
# Scaffold split (default for most tasks)
split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2])
# Random split
split = data.get_split(method='random', seed=42, frac=[0.8, 0.1, 0.1])
# Cold split (for DTI/DDI tasks)
split = data.get_split(method='cold_drug', seed=1) # Unseen drugs in test
split = data.get_split(method='cold_target', seed=1) # Unseen targets in test
```
Available split strategies:
random: Random shufflingscaffold: Scaffold-based (for chemical diversity)cold_drug,cold_target,cold_drug_target: For DTI taskstemporal: Time-based splits for temporal datasets
2. Model Evaluation
Use standardized metrics for evaluation:
```python
from tdc import Evaluator
# For binary classification
evaluator = Evaluator(name='ROC-AUC')
score = evaluator(y_true, y_pred)
# For regression
evaluator = Evaluator(name='RMSE')
score = evaluator(y_true, y_pred)
```
Available metrics: ROC-AUC, PR-AUC, F1, Accuracy, RMSE, MAE, R2, Spearman, Pearson, and more.
3. Data Processing
TDC provides 11 key processing utilities:
```python
from tdc.chem_utils import MolConvert
# Molecule format conversion
converter = MolConvert(src='SMILES', dst='PyG')
pyg_graph = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
```
Processing utilities include:
- Molecule format conversion (SMILES, SELFIES, PyG, DGL, ECFP, etc.)
- Molecule filters (PAINS, drug-likeness)
- Label binarization and unit conversion
- Data balancing (over/under-sampling)
- Negative sampling for pair data
- Graph transformation
- Entity retrieval (CID to SMILES, UniProt to sequence)
For comprehensive utilities documentation, see references/utilities.md.
4. Molecule Generation Oracles
TDC provides 17+ oracle functions for molecular optimization:
```python
from tdc import Oracle
# Single oracle
oracle = Oracle(name='DRD2')
score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
# Multiple oracles
oracle = Oracle(name='JNK3')
scores = oracle(['SMILES1', 'SMILES2', 'SMILES3'])
```
For complete oracle documentation, see references/oracles.md.
Advanced Features
Retrieve Available Datasets
```python
from tdc.utils import retrieve_dataset_names
# Get all ADME datasets
adme_datasets = retrieve_dataset_names('ADME')
# Get all DTI datasets
dti_datasets = retrieve_dataset_names('DTI')
```
Label Transformations
```python
# Get label mapping
label_map = data.get_label_map(name='DrugBank')
# Convert labels
from tdc.chem_utils import label_transform
transformed = label_transform(y, from_unit='nM', to_unit='p')
```
Database Queries
```python
from tdc.utils import cid2smiles, uniprot2seq
# Convert PubChem CID to SMILES
smiles = cid2smiles(2244)
# Convert UniProt ID to amino acid sequence
sequence = uniprot2seq('P12345')
```
Common Workflows
Workflow 1: Train a Single Prediction Model
See scripts/load_and_split_data.py for a complete example:
```python
from tdc.single_pred import ADME
from tdc import Evaluator
# Load data
data = ADME(name='Caco2_Wang')
split = data.get_split(method='scaffold', seed=42)
train, valid, test = split['train'], split['valid'], split['test']
# Train model (user implements)
# model.fit(train['Drug'], train['Y'])
# Evaluate
evaluator = Evaluator(name='MAE')
# score = evaluator(test['Y'], predictions)
```
Workflow 2: Benchmark Evaluation
See scripts/benchmark_evaluation.py for a complete example with multiple seeds and proper evaluation protocol.
Workflow 3: Molecular Generation with Oracles
See scripts/molecular_generation.py for an example of goal-directed generation using oracle functions.
Resources
This skill includes bundled resources for common TDC workflows:
scripts/
load_and_split_data.py: Template for loading and splitting TDC datasets with various strategiesbenchmark_evaluation.py: Template for running benchmark group evaluations with proper 5-seed protocolmolecular_generation.py: Template for molecular generation using oracle functions
references/
datasets.md: Comprehensive catalog of all available datasets organized by task typeoracles.md: Complete documentation of all 17+ molecule generation oraclesutilities.md: Detailed guide to data processing, splitting, and evaluation utilities
Additional Resources
- Official Website: https://tdcommons.ai
- Documentation: https://tdc.readthedocs.io
- GitHub: https://github.com/mims-harvard/TDC
- Paper: NeurIPS 2021 - "Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development"
More from this repository10
nextjs-shadcn-builder skill from ovachiever/droid-tings
security-auditor skill from ovachiever/droid-tings
threejs-graphics-optimizer skill from ovachiever/droid-tings
api-documenter skill from ovachiever/droid-tings
secret-scanner skill from ovachiever/droid-tings
readme-updater skill from ovachiever/droid-tings
applying-brand-guidelines skill from ovachiever/droid-tings
Configures Tailwind v4 with shadcn/ui, automating CSS variable setup, dark mode, and preventing common initialization errors.
deep-reading-analyst skill from ovachiever/droid-tings
dependency-auditor skill from ovachiever/droid-tings