1. Quality Control
Identify and filter low-quality cells and genes:
```python
# Identify mitochondrial genes
adata.var['mt'] = adata.var_names.str.startswith('MT-')
# Calculate QC metrics
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], inplace=True)
# Visualize QC metrics
sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'],
jitter=0.4, multi_panel=True)
# Filter cells and genes
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
adata = adata[adata.obs.pct_counts_mt < 5, :] # Remove high MT% cells
```
Use the QC script for automated analysis:
```bash
python scripts/qc_analysis.py input_file.h5ad --output filtered.h5ad
```
2. Normalization and Preprocessing
```python
# Normalize to 10,000 counts per cell
sc.pp.normalize_total(adata, target_sum=1e4)
# Log-transform
sc.pp.log1p(adata)
# Save raw counts for later
adata.raw = adata
# Identify highly variable genes
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
sc.pl.highly_variable_genes(adata)
# Subset to highly variable genes
adata = adata[:, adata.var.highly_variable]
# Regress out unwanted variation
sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt'])
# Scale data
sc.pp.scale(adata, max_value=10)
```
3. Dimensionality Reduction
```python
# PCA
sc.tl.pca(adata, svd_solver='arpack')
sc.pl.pca_variance_ratio(adata, log=True) # Check elbow plot
# Compute neighborhood graph
sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40)
# UMAP for visualization
sc.tl.umap(adata)
sc.pl.umap(adata, color='leiden')
# Alternative: t-SNE
sc.tl.tsne(adata)
```
4. Clustering
```python
# Leiden clustering (recommended)
sc.tl.leiden(adata, resolution=0.5)
sc.pl.umap(adata, color='leiden', legend_loc='on data')
# Try multiple resolutions to find optimal granularity
for res in [0.3, 0.5, 0.8, 1.0]:
sc.tl.leiden(adata, resolution=res, key_added=f'leiden_{res}')
```
5. Marker Gene Identification
```python
# Find marker genes for each cluster
sc.tl.rank_genes_groups(adata, 'leiden', method='wilcoxon')
# Visualize results
sc.pl.rank_genes_groups(adata, n_genes=25, sharey=False)
sc.pl.rank_genes_groups_heatmap(adata, n_genes=10)
sc.pl.rank_genes_groups_dotplot(adata, n_genes=5)
# Get results as DataFrame
markers = sc.get.rank_genes_groups_df(adata, group='0')
```
6. Cell Type Annotation
```python
# Define marker genes for known cell types
marker_genes = ['CD3D', 'CD14', 'MS4A1', 'NKG7', 'FCGR3A']
# Visualize markers
sc.pl.umap(adata, color=marker_genes, use_raw=True)
sc.pl.dotplot(adata, var_names=marker_genes, groupby='leiden')
# Manual annotation
cluster_to_celltype = {
'0': 'CD4 T cells',
'1': 'CD14+ Monocytes',
'2': 'B cells',
'3': 'CD8 T cells',
}
adata.obs['cell_type'] = adata.obs['leiden'].map(cluster_to_celltype)
# Visualize annotated types
sc.pl.umap(adata, color='cell_type', legend_loc='on data')
```
7. Save Results
```python
# Save processed data
adata.write('results/processed_data.h5ad')
# Export metadata
adata.obs.to_csv('results/cell_metadata.csv')
adata.var.to_csv('results/gene_metadata.csv')
```