🎯

data-storytelling

🎯Skill

from rmyndharis/antigravity-skills

VibeIndex|
What it does

Transforms complex data into persuasive narratives that reveal insights, contextualize trends, and drive strategic decision-making through storytelling techniques.

πŸ“¦

Part of

rmyndharis/antigravity-skills(289 items)

data-storytelling

Installation

npm runRun npm script
npm run build:catalog
npxRun with npx
npx @rmyndharis/antigravity-skills search <query>
npxRun with npx
npx @rmyndharis/antigravity-skills search kubernetes
npxRun with npx
npx @rmyndharis/antigravity-skills list
npxRun with npx
npx @rmyndharis/antigravity-skills install <skill-name>

+ 15 more commands

πŸ“– Extracted from docs: rmyndharis/antigravity-skills
11Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Transform data into compelling narratives using visualization, context, and persuasive structure. Use when presenting analytics to stakeholders, creating data reports, or building executive presentations.

Overview

# Data Storytelling

Transform raw data into compelling narratives that drive decisions and inspire action.

Do not use this skill when

  • The task is unrelated to data storytelling
  • You need a different domain or tool outside this scope

Instructions

  • Clarify goals, constraints, and required inputs.
  • Apply relevant best practices and validate outcomes.
  • Provide actionable steps and verification.
  • If detailed examples are required, open resources/implementation-playbook.md.

Use this skill when

  • Presenting analytics to executives
  • Creating quarterly business reviews
  • Building investor presentations
  • Writing data-driven reports
  • Communicating insights to non-technical audiences
  • Making recommendations based on data

Core Concepts

1. Story Structure

```

Setup β†’ Conflict β†’ Resolution

Setup: Context and baseline

Conflict: The problem or opportunity

Resolution: Insights and recommendations

```

2. Narrative Arc

```

  1. Hook: Grab attention with surprising insight
  2. Context: Establish the baseline
  3. Rising Action: Build through data points
  4. Climax: The key insight
  5. Resolution: Recommendations
  6. Call to Action: Next steps

```

3. Three Pillars

| Pillar | Purpose | Components |

| ------------- | -------- | -------------------------------- |

| Data | Evidence | Numbers, trends, comparisons |

| Narrative | Meaning | Context, causation, implications |

| Visuals | Clarity | Charts, diagrams, highlights |

Story Frameworks

Framework 1: The Problem-Solution Story

```markdown

# Customer Churn Analysis

The Hook

"We're losing $2.4M annually to preventable churn."

The Context

  • Current churn rate: 8.5% (industry average: 5%)
  • Average customer lifetime value: $4,800
  • 500 customers churned last quarter

The Problem

Analysis of churned customers reveals a pattern:

  • 73% churned within first 90 days
  • Common factor: < 3 support interactions
  • Low feature adoption in first month

The Insight

[Show engagement curve visualization]

Customers who don't engage in the first 14 days

are 4x more likely to churn.

The Solution

  1. Implement 14-day onboarding sequence
  2. Proactive outreach at day 7
  3. Feature adoption tracking

Expected Impact

  • Reduce early churn by 40%
  • Save $960K annually
  • Payback period: 3 months

Call to Action

Approve $50K budget for onboarding automation.

```

Framework 2: The Trend Story

```markdown

# Q4 Performance Analysis

Where We Started

Q3 ended with $1.2M MRR, 15% below target.

Team morale was low after missed goals.

What Changed

[Timeline visualization]

  • Oct: Launched self-serve pricing
  • Nov: Reduced friction in signup
  • Dec: Added customer success calls

The Transformation

[Before/after comparison chart]

| Metric | Q3 | Q4 | Change |

|----------------|--------|--------|--------|

| Trial β†’ Paid | 8% | 15% | +87% |

| Time to Value | 14 days| 5 days | -64% |

| Expansion Rate | 2% | 8% | +300% |

Key Insight

Self-serve + high-touch creates compound growth.

Customers who self-serve AND get a success call

have 3x higher expansion rate.

Going Forward

Double down on hybrid model.

Target: $1.8M MRR by Q2.

```

Framework 3: The Comparison Story

```markdown

# Market Opportunity Analysis

The Question

Should we expand into EMEA or APAC first?

The Comparison

[Side-by-side market analysis]

EMEA

  • Market size: $4.2B
  • Growth rate: 8%
  • Competition: High
  • Regulatory: Complex (GDPR)
  • Language: Multiple

APAC

  • Market size: $3.8B
  • Growth rate: 15%
  • Competition: Moderate
  • Regulatory: Varied
  • Language: Multiple

The Analysis

[Weighted scoring matrix visualization]

| Factor | Weight | EMEA Score | APAC Score |

| ----------- | ------ | ---------- | ---------- |

| Market Size | 25% | 5 | 4 |

| Growth | 30% | 3 | 5 |

| Competition | 20% | 2 | 4 |

| Ease | 25% | 2 | 3 |

| Total | | 2.9 | 4.1 |

The Recommendation

APAC first. Higher growth, less competition.

Start with Singapore hub (English, business-friendly).

Enter EMEA in Year 2 with localization ready.

Risk Mitigation

  • Timezone coverage: Hire 24/7 support
  • Cultural fit: Local partnerships
  • Payment: Multi-currency from day 1

```

Visualization Techniques

Technique 1: Progressive Reveal

```markdown

Start simple, add layers:

Slide 1: "Revenue is growing" [single line chart]

Slide 2: "But growth is slowing" [add growth rate overlay]

Slide 3: "Driven by one segment" [add segment breakdown]

Slide 4: "Which is saturating" [add market share]

Slide 5: "We need new segments" [add opportunity zones]

```

Technique 2: Contrast and Compare

```markdown

Before/After:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ BEFORE β”‚ AFTER β”‚

β”‚ β”‚ β”‚

β”‚ Process: 5 daysβ”‚ Process: 1 day β”‚

β”‚ Errors: 15% β”‚ Errors: 2% β”‚

β”‚ Cost: $50/unit β”‚ Cost: $20/unit β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

This/That (emphasize difference):

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ CUSTOMER A vs B β”‚

β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚

β”‚ β”‚ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β”‚ β”‚ β–ˆβ–ˆ β”‚ β”‚

β”‚ β”‚ $45,000 β”‚ β”‚ $8,000 β”‚ β”‚

β”‚ β”‚ LTV β”‚ β”‚ LTV β”‚ β”‚

β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚

β”‚ Onboarded No onboarding β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

```

Technique 3: Annotation and Highlight

```python

import matplotlib.pyplot as plt

import pandas as pd

fig, ax = plt.subplots(figsize=(12, 6))

# Plot the main data

ax.plot(dates, revenue, linewidth=2, color='#2E86AB')

# Add annotation for key events

ax.annotate(

'Product Launch\n+32% spike',

xy=(launch_date, launch_revenue),

xytext=(launch_date, launch_revenue * 1.2),

fontsize=10,

arrowprops=dict(arrowstyle='->', color='#E63946'),

color='#E63946'

)

# Highlight a region

ax.axvspan(growth_start, growth_end, alpha=0.2, color='green',

label='Growth Period')

# Add threshold line

ax.axhline(y=target, color='gray', linestyle='--',

label=f'Target: ${target:,.0f}')

ax.set_title('Revenue Growth Story', fontsize=14, fontweight='bold')

ax.legend()

```

Presentation Templates

Template 1: Executive Summary Slide

```

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ KEY INSIGHT β”‚

β”‚ ══════════════════════════════════════════════════════════│

β”‚ β”‚

β”‚ "Customers who complete onboarding in week 1 β”‚

β”‚ have 3x higher lifetime value" β”‚

β”‚ β”‚

β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€

β”‚ β”‚ β”‚

β”‚ THE DATA β”‚ THE IMPLICATION β”‚

β”‚ β”‚ β”‚

β”‚ Week 1 completers: β”‚ βœ“ Prioritize onboarding UX β”‚

β”‚ β€’ LTV: $4,500 β”‚ βœ“ Add day-1 success milestones β”‚

β”‚ β€’ Retention: 85% β”‚ βœ“ Proactive week-1 outreach β”‚

β”‚ β€’ NPS: 72 β”‚ β”‚

β”‚ β”‚ Investment: $75K β”‚

β”‚ Others: β”‚ Expected ROI: 8x β”‚

β”‚ β€’ LTV: $1,500 β”‚ β”‚

β”‚ β€’ Retention: 45% β”‚ β”‚

β”‚ β€’ NPS: 34 β”‚ β”‚

β”‚ β”‚ β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

```

Template 2: Data Story Flow

```

Slide 1: THE HEADLINE

"We can grow 40% faster by fixing onboarding"

Slide 2: THE CONTEXT

Current state metrics

Industry benchmarks

Gap analysis

Slide 3: THE DISCOVERY

What the data revealed

Surprising finding

Pattern identification

Slide 4: THE DEEP DIVE

Root cause analysis

Segment breakdowns

Statistical significance

Slide 5: THE RECOMMENDATION

Proposed actions

Resource requirements

Timeline

Slide 6: THE IMPACT

Expected outcomes

ROI calculation

Risk assessment

Slide 7: THE ASK

Specific request

Decision needed

Next steps

```

Template 3: One-Page Dashboard Story

```markdown

# Monthly Business Review: January 2024

THE HEADLINE

Revenue up 15% but CAC increasing faster than LTV

KEY METRICS AT A GLANCE

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”

β”‚ MRR β”‚ NRR β”‚ CAC β”‚ LTV β”‚

β”‚ $125K β”‚ 108% β”‚ $450 β”‚ $2,200 β”‚

β”‚ β–²15% β”‚ β–²3% β”‚ β–²22% β”‚ β–²8% β”‚

β””β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”˜

WHAT'S WORKING

βœ“ Enterprise segment growing 25% MoM

βœ“ Referral program driving 30% of new logos

βœ“ Support satisfaction at all-time high (94%)

WHAT NEEDS ATTENTION

βœ— SMB acquisition cost up 40%

βœ— Trial conversion down 5 points

βœ— Time-to-value increased by 3 days

ROOT CAUSE

[Mini chart showing SMB vs Enterprise CAC trend]

SMB paid ads becoming less efficient.

CPC up 35% while conversion flat.

RECOMMENDATION

  1. Shift $20K/mo from paid to content
  2. Launch SMB self-serve trial
  3. A/B test shorter onboarding

NEXT MONTH'S FOCUS

  • Launch content marketing pilot
  • Complete self-serve MVP
  • Reduce time-to-value to < 7 days

```

Writing Techniques

Headlines That Work

```markdown

BAD: "Q4 Sales Analysis"

GOOD: "Q4 Sales Beat Target by 23% - Here's Why"

BAD: "Customer Churn Report"

GOOD: "We're Losing $2.4M to Preventable Churn"

BAD: "Marketing Performance"

GOOD: "Content Marketing Delivers 4x ROI vs. Paid"

Formula:

[Specific Number] + [Business Impact] + [Actionable Context]

```

Transition Phrases

```markdown

Building the narrative:

β€’ "This leads us to ask..."

β€’ "When we dig deeper..."

β€’ "The pattern becomes clear when..."

β€’ "Contrast this with..."

Introducing insights:

β€’ "The data reveals..."

β€’ "What surprised us was..."

β€’ "The inflection point came when..."

β€’ "The key finding is..."

Moving to action:

β€’ "This insight suggests..."

β€’ "Based on this analysis..."

β€’ "The implication is clear..."

β€’ "Our recommendation is..."

```

Handling Uncertainty

```markdown

Acknowledge limitations:

β€’ "With 95% confidence, we can say..."

β€’ "The sample size of 500 shows..."

β€’ "While correlation is strong, causation requires..."

β€’ "This trend holds for [segment], though [caveat]..."

Present ranges:

β€’ "Impact estimate: $400K-$600K"

β€’ "Confidence interval: 15-20% improvement"

β€’ "Best case: X, Conservative: Y"

```

Best Practices

Do's

  • Start with the "so what" - Lead with insight
  • Use the rule of three - Three points, three comparisons
  • Show, don't tell - Let data speak
  • Make it personal - Connect to audience goals
  • End with action - Clear next steps

Don'ts

  • Don't data dump - Curate ruthlessly
  • Don't bury the insight - Front-load key findings
  • Don't use jargon - Match audience vocabulary
  • Don't show methodology first - Context, then method
  • Don't forget the narrative - Numbers need meaning

Resources

  • [Storytelling with Data (Cole Nussbaumer)](https://www.storytellingwithdata.com/)
  • [The Pyramid Principle (Barbara Minto)](https://www.amazon.com/Pyramid-Principle-Logic-Writing-Thinking/dp/0273710516)
  • [Resonate (Nancy Duarte)](https://www.duarte.com/resonate/)