🎯

langchain-architecture

🎯Skill

from rmyndharis/antigravity-skills

VibeIndex|
What it does

Designs and implements sophisticated LLM applications using LangChain's agents, chains, memory, and tool integration patterns.

πŸ“¦

Part of

rmyndharis/antigravity-skills(289 items)

langchain-architecture

Installation

npm runRun npm script
npm run build:catalog
npxRun with npx
npx @rmyndharis/antigravity-skills search <query>
npxRun with npx
npx @rmyndharis/antigravity-skills search kubernetes
npxRun with npx
npx @rmyndharis/antigravity-skills list
npxRun with npx
npx @rmyndharis/antigravity-skills install <skill-name>

+ 15 more commands

πŸ“– Extracted from docs: rmyndharis/antigravity-skills
11Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Design LLM applications using the LangChain framework with agents, memory, and tool integration patterns. Use when building LangChain applications, implementing AI agents, or creating complex LLM workflows.

Overview

# LangChain Architecture

Master the LangChain framework for building sophisticated LLM applications with agents, chains, memory, and tool integration.

Do not use this skill when

  • The task is unrelated to langchain architecture
  • You need a different domain or tool outside this scope

Instructions

  • Clarify goals, constraints, and required inputs.
  • Apply relevant best practices and validate outcomes.
  • Provide actionable steps and verification.
  • If detailed examples are required, open resources/implementation-playbook.md.

Use this skill when

  • Building autonomous AI agents with tool access
  • Implementing complex multi-step LLM workflows
  • Managing conversation memory and state
  • Integrating LLMs with external data sources and APIs
  • Creating modular, reusable LLM application components
  • Implementing document processing pipelines
  • Building production-grade LLM applications

Core Concepts

1. Agents

Autonomous systems that use LLMs to decide which actions to take.

Agent Types:

  • ReAct: Reasoning + Acting in interleaved manner
  • OpenAI Functions: Leverages function calling API
  • Structured Chat: Handles multi-input tools
  • Conversational: Optimized for chat interfaces
  • Self-Ask with Search: Decomposes complex queries

2. Chains

Sequences of calls to LLMs or other utilities.

Chain Types:

  • LLMChain: Basic prompt + LLM combination
  • SequentialChain: Multiple chains in sequence
  • RouterChain: Routes inputs to specialized chains
  • TransformChain: Data transformations between steps
  • MapReduceChain: Parallel processing with aggregation

3. Memory

Systems for maintaining context across interactions.

Memory Types:

  • ConversationBufferMemory: Stores all messages
  • ConversationSummaryMemory: Summarizes older messages
  • ConversationBufferWindowMemory: Keeps last N messages
  • EntityMemory: Tracks information about entities
  • VectorStoreMemory: Semantic similarity retrieval

4. Document Processing

Loading, transforming, and storing documents for retrieval.

Components:

  • Document Loaders: Load from various sources
  • Text Splitters: Chunk documents intelligently
  • Vector Stores: Store and retrieve embeddings
  • Retrievers: Fetch relevant documents
  • Indexes: Organize documents for efficient access

5. Callbacks

Hooks for logging, monitoring, and debugging.

Use Cases:

  • Request/response logging
  • Token usage tracking
  • Latency monitoring
  • Error handling
  • Custom metrics collection

Quick Start

```python

from langchain.agents import AgentType, initialize_agent, load_tools

from langchain.llms import OpenAI

from langchain.memory import ConversationBufferMemory

# Initialize LLM

llm = OpenAI(temperature=0)

# Load tools

tools = load_tools(["serpapi", "llm-math"], llm=llm)

# Add memory

memory = ConversationBufferMemory(memory_key="chat_history")

# Create agent

agent = initialize_agent(

tools,

llm,

agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION,

memory=memory,

verbose=True

)

# Run agent

result = agent.run("What's the weather in SF? Then calculate 25 * 4")

```

Architecture Patterns

Pattern 1: RAG with LangChain

```python

from langchain.chains import RetrievalQA

from langchain.document_loaders import TextLoader

from langchain.text_splitter import CharacterTextSplitter

from langchain.vectorstores import Chroma

from langchain.embeddings import OpenAIEmbeddings

# Load and process documents

loader = TextLoader('documents.txt')

documents = loader.load()

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)

texts = text_splitter.split_documents(documents)

# Create vector store

embeddings = OpenAIEmbeddings()

vectorstore = Chroma.from_documents(texts, embeddings)

# Create retrieval chain

qa_chain = RetrievalQA.from_chain_type(

llm=llm,

chain_type="stuff",

retriever=vectorstore.as_retriever(),

return_source_documents=True

)

# Query

result = qa_chain({"query": "What is the main topic?"})

```

Pattern 2: Custom Agent with Tools

```python

from langchain.agents import Tool, AgentExecutor

from langchain.agents.react.base import ReActDocstoreAgent

from langchain.tools import tool

@tool

def search_database(query: str) -> str:

"""Search internal database for information."""

# Your database search logic

return f"Results for: {query}"

@tool

def send_email(recipient: str, content: str) -> str:

"""Send an email to specified recipient."""

# Email sending logic

return f"Email sent to {recipient}"

tools = [search_database, send_email]

agent = initialize_agent(

tools,

llm,

agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,

verbose=True

)

```

Pattern 3: Multi-Step Chain

```python

from langchain.chains import LLMChain, SequentialChain

from langchain.prompts import PromptTemplate

# Step 1: Extract key information

extract_prompt = PromptTemplate(

input_variables=["text"],

template="Extract key entities from: {text}\n\nEntities:"

)

extract_chain = LLMChain(llm=llm, prompt=extract_prompt, output_key="entities")

# Step 2: Analyze entities

analyze_prompt = PromptTemplate(

input_variables=["entities"],

template="Analyze these entities: {entities}\n\nAnalysis:"

)

analyze_chain = LLMChain(llm=llm, prompt=analyze_prompt, output_key="analysis")

# Step 3: Generate summary

summary_prompt = PromptTemplate(

input_variables=["entities", "analysis"],

template="Summarize:\nEntities: {entities}\nAnalysis: {analysis}\n\nSummary:"

)

summary_chain = LLMChain(llm=llm, prompt=summary_prompt, output_key="summary")

# Combine into sequential chain

overall_chain = SequentialChain(

chains=[extract_chain, analyze_chain, summary_chain],

input_variables=["text"],

output_variables=["entities", "analysis", "summary"],

verbose=True

)

```

Memory Management Best Practices

Choosing the Right Memory Type

```python

# For short conversations (< 10 messages)

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory()

# For long conversations (summarize old messages)

from langchain.memory import ConversationSummaryMemory

memory = ConversationSummaryMemory(llm=llm)

# For sliding window (last N messages)

from langchain.memory import ConversationBufferWindowMemory

memory = ConversationBufferWindowMemory(k=5)

# For entity tracking

from langchain.memory import ConversationEntityMemory

memory = ConversationEntityMemory(llm=llm)

# For semantic retrieval of relevant history

from langchain.memory import VectorStoreRetrieverMemory

memory = VectorStoreRetrieverMemory(retriever=retriever)

```

Callback System

Custom Callback Handler

```python

from langchain.callbacks.base import BaseCallbackHandler

class CustomCallbackHandler(BaseCallbackHandler):

def on_llm_start(self, serialized, prompts, **kwargs):

print(f"LLM started with prompts: {prompts}")

def on_llm_end(self, response, **kwargs):

print(f"LLM ended with response: {response}")

def on_llm_error(self, error, **kwargs):

print(f"LLM error: {error}")

def on_chain_start(self, serialized, inputs, **kwargs):

print(f"Chain started with inputs: {inputs}")

def on_agent_action(self, action, **kwargs):

print(f"Agent taking action: {action}")

# Use callback

agent.run("query", callbacks=[CustomCallbackHandler()])

```

Testing Strategies

```python

import pytest

from unittest.mock import Mock

def test_agent_tool_selection():

# Mock LLM to return specific tool selection

mock_llm = Mock()

mock_llm.predict.return_value = "Action: search_database\nAction Input: test query"

agent = initialize_agent(tools, mock_llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)

result = agent.run("test query")

# Verify correct tool was selected

assert "search_database" in str(mock_llm.predict.call_args)

def test_memory_persistence():

memory = ConversationBufferMemory()

memory.save_context({"input": "Hi"}, {"output": "Hello!"})

assert "Hi" in memory.load_memory_variables({})['history']

assert "Hello!" in memory.load_memory_variables({})['history']

```

Performance Optimization

1. Caching

```python

from langchain.cache import InMemoryCache

import langchain

langchain.llm_cache = InMemoryCache()

```

2. Batch Processing

```python

# Process multiple documents in parallel

from langchain.document_loaders import DirectoryLoader

from concurrent.futures import ThreadPoolExecutor

loader = DirectoryLoader('./docs')

docs = loader.load()

def process_doc(doc):

return text_splitter.split_documents([doc])

with ThreadPoolExecutor(max_workers=4) as executor:

split_docs = list(executor.map(process_doc, docs))

```

3. Streaming Responses

```python

from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

llm = OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()])

```

Resources

  • references/agents.md: Deep dive on agent architectures
  • references/memory.md: Memory system patterns
  • references/chains.md: Chain composition strategies
  • references/document-processing.md: Document loading and indexing
  • references/callbacks.md: Monitoring and observability
  • assets/agent-template.py: Production-ready agent template
  • assets/memory-config.yaml: Memory configuration examples
  • assets/chain-example.py: Complex chain examples

Common Pitfalls

  1. Memory Overflow: Not managing conversation history length
  2. Tool Selection Errors: Poor tool descriptions confuse agents
  3. Context Window Exceeded: Exceeding LLM token limits
  4. No Error Handling: Not catching and handling agent failures
  5. Inefficient Retrieval: Not optimizing vector store queries

Production Checklist

  • [ ] Implement proper error handling
  • [ ] Add request/response logging
  • [ ] Monitor token usage and costs
  • [ ] Set timeout limits for agent execution
  • [ ] Implement rate limiting
  • [ ] Add input validation
  • [ ] Test with edge cases
  • [ ] Set up observability (callbacks)
  • [ ] Implement fallback strategies
  • [ ] Version control prompts and configurations