llm-evaluation
π―Skillfrom rmyndharis/antigravity-skills
Evaluates LLM applications systematically using automated metrics, human feedback, and comparative analysis to measure performance and quality.
Part of
rmyndharis/antigravity-skills(289 items)
Installation
npm run build:catalognpx @rmyndharis/antigravity-skills search <query>npx @rmyndharis/antigravity-skills search kubernetesnpx @rmyndharis/antigravity-skills listnpx @rmyndharis/antigravity-skills install <skill-name>+ 15 more commands
Skill Details
Implement comprehensive evaluation strategies for LLM applications using automated metrics, human feedback, and benchmarking. Use when testing LLM performance, measuring AI application quality, or establishing evaluation frameworks.
Overview
# LLM Evaluation
Master comprehensive evaluation strategies for LLM applications, from automated metrics to human evaluation and A/B testing.
Do not use this skill when
- The task is unrelated to llm evaluation
- You need a different domain or tool outside this scope
Instructions
- Clarify goals, constraints, and required inputs.
- Apply relevant best practices and validate outcomes.
- Provide actionable steps and verification.
- If detailed examples are required, open
resources/implementation-playbook.md.
Use this skill when
- Measuring LLM application performance systematically
- Comparing different models or prompts
- Detecting performance regressions before deployment
- Validating improvements from prompt changes
- Building confidence in production systems
- Establishing baselines and tracking progress over time
- Debugging unexpected model behavior
Core Evaluation Types
1. Automated Metrics
Fast, repeatable, scalable evaluation using computed scores.
Text Generation:
- BLEU: N-gram overlap (translation)
- ROUGE: Recall-oriented (summarization)
- METEOR: Semantic similarity
- BERTScore: Embedding-based similarity
- Perplexity: Language model confidence
Classification:
- Accuracy: Percentage correct
- Precision/Recall/F1: Class-specific performance
- Confusion Matrix: Error patterns
- AUC-ROC: Ranking quality
Retrieval (RAG):
- MRR: Mean Reciprocal Rank
- NDCG: Normalized Discounted Cumulative Gain
- Precision@K: Relevant in top K
- Recall@K: Coverage in top K
2. Human Evaluation
Manual assessment for quality aspects difficult to automate.
Dimensions:
- Accuracy: Factual correctness
- Coherence: Logical flow
- Relevance: Answers the question
- Fluency: Natural language quality
- Safety: No harmful content
- Helpfulness: Useful to the user
3. LLM-as-Judge
Use stronger LLMs to evaluate weaker model outputs.
Approaches:
- Pointwise: Score individual responses
- Pairwise: Compare two responses
- Reference-based: Compare to gold standard
- Reference-free: Judge without ground truth
Quick Start
```python
from llm_eval import EvaluationSuite, Metric
# Define evaluation suite
suite = EvaluationSuite([
Metric.accuracy(),
Metric.bleu(),
Metric.bertscore(),
Metric.custom(name="groundedness", fn=check_groundedness)
])
# Prepare test cases
test_cases = [
{
"input": "What is the capital of France?",
"expected": "Paris",
"context": "France is a country in Europe. Paris is its capital."
},
# ... more test cases
]
# Run evaluation
results = suite.evaluate(
model=your_model,
test_cases=test_cases
)
print(f"Overall Accuracy: {results.metrics['accuracy']}")
print(f"BLEU Score: {results.metrics['bleu']}")
```
Automated Metrics Implementation
BLEU Score
```python
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
def calculate_bleu(reference, hypothesis):
"""Calculate BLEU score between reference and hypothesis."""
smoothie = SmoothingFunction().method4
return sentence_bleu(
[reference.split()],
hypothesis.split(),
smoothing_function=smoothie
)
# Usage
bleu = calculate_bleu(
reference="The cat sat on the mat",
hypothesis="A cat is sitting on the mat"
)
```
ROUGE Score
```python
from rouge_score import rouge_scorer
def calculate_rouge(reference, hypothesis):
"""Calculate ROUGE scores."""
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
scores = scorer.score(reference, hypothesis)
return {
'rouge1': scores['rouge1'].fmeasure,
'rouge2': scores['rouge2'].fmeasure,
'rougeL': scores['rougeL'].fmeasure
}
```
BERTScore
```python
from bert_score import score
def calculate_bertscore(references, hypotheses):
"""Calculate BERTScore using pre-trained BERT."""
P, R, F1 = score(
hypotheses,
references,
lang='en',
model_type='microsoft/deberta-xlarge-mnli'
)
return {
'precision': P.mean().item(),
'recall': R.mean().item(),
'f1': F1.mean().item()
}
```
Custom Metrics
```python
def calculate_groundedness(response, context):
"""Check if response is grounded in provided context."""
# Use NLI model to check entailment
from transformers import pipeline
nli = pipeline("text-classification", model="microsoft/deberta-large-mnli")
result = nli(f"{context} [SEP] {response}")[0]
# Return confidence that response is entailed by context
return result['score'] if result['label'] == 'ENTAILMENT' else 0.0
def calculate_toxicity(text):
"""Measure toxicity in generated text."""
from detoxify import Detoxify
results = Detoxify('original').predict(text)
return max(results.values()) # Return highest toxicity score
def calculate_factuality(claim, knowledge_base):
"""Verify factual claims against knowledge base."""
# Implementation depends on your knowledge base
# Could use retrieval + NLI, or fact-checking API
pass
```
LLM-as-Judge Patterns
Single Output Evaluation
```python
def llm_judge_quality(response, question):
"""Use GPT-5 to judge response quality."""
prompt = f"""Rate the following response on a scale of 1-10 for:
- Accuracy (factually correct)
- Helpfulness (answers the question)
- Clarity (well-written and understandable)
Question: {question}
Response: {response}
Provide ratings in JSON format:
{{
"accuracy": <1-10>,
"helpfulness": <1-10>,
"clarity": <1-10>,
"reasoning": "
}}
"""
result = openai.ChatCompletion.create(
model="gpt-5",
messages=[{"role": "user", "content": prompt}],
temperature=0
)
return json.loads(result.choices[0].message.content)
```
Pairwise Comparison
```python
def compare_responses(question, response_a, response_b):
"""Compare two responses using LLM judge."""
prompt = f"""Compare these two responses to the question and determine which is better.
Question: {question}
Response A: {response_a}
Response B: {response_b}
Which response is better and why? Consider accuracy, helpfulness, and clarity.
Answer with JSON:
{{
"winner": "A" or "B" or "tie",
"reasoning": "
"confidence": <1-10>
}}
"""
result = openai.ChatCompletion.create(
model="gpt-5",
messages=[{"role": "user", "content": prompt}],
temperature=0
)
return json.loads(result.choices[0].message.content)
```
Human Evaluation Frameworks
Annotation Guidelines
```python
class AnnotationTask:
"""Structure for human annotation task."""
def __init__(self, response, question, context=None):
self.response = response
self.question = question
self.context = context
def get_annotation_form(self):
return {
"question": self.question,
"context": self.context,
"response": self.response,
"ratings": {
"accuracy": {
"scale": "1-5",
"description": "Is the response factually correct?"
},
"relevance": {
"scale": "1-5",
"description": "Does it answer the question?"
},
"coherence": {
"scale": "1-5",
"description": "Is it logically consistent?"
}
},
"issues": {
"factual_error": False,
"hallucination": False,
"off_topic": False,
"unsafe_content": False
},
"feedback": ""
}
```
Inter-Rater Agreement
```python
from sklearn.metrics import cohen_kappa_score
def calculate_agreement(rater1_scores, rater2_scores):
"""Calculate inter-rater agreement."""
kappa = cohen_kappa_score(rater1_scores, rater2_scores)
interpretation = {
kappa < 0: "Poor",
kappa < 0.2: "Slight",
kappa < 0.4: "Fair",
kappa < 0.6: "Moderate",
kappa < 0.8: "Substantial",
kappa <= 1.0: "Almost Perfect"
}
return {
"kappa": kappa,
"interpretation": interpretation[True]
}
```
A/B Testing
Statistical Testing Framework
```python
from scipy import stats
import numpy as np
class ABTest:
def __init__(self, variant_a_name="A", variant_b_name="B"):
self.variant_a = {"name": variant_a_name, "scores": []}
self.variant_b = {"name": variant_b_name, "scores": []}
def add_result(self, variant, score):
"""Add evaluation result for a variant."""
if variant == "A":
self.variant_a["scores"].append(score)
else:
self.variant_b["scores"].append(score)
def analyze(self, alpha=0.05):
"""Perform statistical analysis."""
a_scores = self.variant_a["scores"]
b_scores = self.variant_b["scores"]
# T-test
t_stat, p_value = stats.ttest_ind(a_scores, b_scores)
# Effect size (Cohen's d)
pooled_std = np.sqrt((np.std(a_scores)2 + np.std(b_scores)2) / 2)
cohens_d = (np.mean(b_scores) - np.mean(a_scores)) / pooled_std
return {
"variant_a_mean": np.mean(a_scores),
"variant_b_mean": np.mean(b_scores),
"difference": np.mean(b_scores) - np.mean(a_scores),
"relative_improvement": (np.mean(b_scores) - np.mean(a_scores)) / np.mean(a_scores),
"p_value": p_value,
"statistically_significant": p_value < alpha,
"cohens_d": cohens_d,
"effect_size": self.interpret_cohens_d(cohens_d),
"winner": "B" if np.mean(b_scores) > np.mean(a_scores) else "A"
}
@staticmethod
def interpret_cohens_d(d):
"""Interpret Cohen's d effect size."""
abs_d = abs(d)
if abs_d < 0.2:
return "negligible"
elif abs_d < 0.5:
return "small"
elif abs_d < 0.8:
return "medium"
else:
return "large"
```
Regression Testing
Regression Detection
```python
class RegressionDetector:
def __init__(self, baseline_results, threshold=0.05):
self.baseline = baseline_results
self.threshold = threshold
def check_for_regression(self, new_results):
"""Detect if new results show regression."""
regressions = []
for metric in self.baseline.keys():
baseline_score = self.baseline[metric]
new_score = new_results.get(metric)
if new_score is None:
continue
# Calculate relative change
relative_change = (new_score - baseline_score) / baseline_score
# Flag if significant decrease
if relative_change < -self.threshold:
regressions.append({
"metric": metric,
"baseline": baseline_score,
"current": new_score,
"change": relative_change
})
return {
"has_regression": len(regressions) > 0,
"regressions": regressions
}
```
Benchmarking
Running Benchmarks
```python
class BenchmarkRunner:
def __init__(self, benchmark_dataset):
self.dataset = benchmark_dataset
def run_benchmark(self, model, metrics):
"""Run model on benchmark and calculate metrics."""
results = {metric.name: [] for metric in metrics}
for example in self.dataset:
# Generate prediction
prediction = model.predict(example["input"])
# Calculate each metric
for metric in metrics:
score = metric.calculate(
prediction=prediction,
reference=example["reference"],
context=example.get("context")
)
results[metric.name].append(score)
# Aggregate results
return {
metric: {
"mean": np.mean(scores),
"std": np.std(scores),
"min": min(scores),
"max": max(scores)
}
for metric, scores in results.items()
}
```
Resources
- references/metrics.md: Comprehensive metric guide
- references/human-evaluation.md: Annotation best practices
- references/benchmarking.md: Standard benchmarks
- references/a-b-testing.md: Statistical testing guide
- references/regression-testing.md: CI/CD integration
- assets/evaluation-framework.py: Complete evaluation harness
- assets/benchmark-dataset.jsonl: Example datasets
- scripts/evaluate-model.py: Automated evaluation runner
Best Practices
- Multiple Metrics: Use diverse metrics for comprehensive view
- Representative Data: Test on real-world, diverse examples
- Baselines: Always compare against baseline performance
- Statistical Rigor: Use proper statistical tests for comparisons
- Continuous Evaluation: Integrate into CI/CD pipeline
- Human Validation: Combine automated metrics with human judgment
- Error Analysis: Investigate failures to understand weaknesses
- Version Control: Track evaluation results over time
Common Pitfalls
- Single Metric Obsession: Optimizing for one metric at the expense of others
- Small Sample Size: Drawing conclusions from too few examples
- Data Contamination: Testing on training data
- Ignoring Variance: Not accounting for statistical uncertainty
- Metric Mismatch: Using metrics not aligned with business goals
More from this repository10
unity-developer skill from rmyndharis/antigravity-skills
dotnet-architect skill from rmyndharis/antigravity-skills
ios-developer skill from rmyndharis/antigravity-skills
java-pro skill from rmyndharis/antigravity-skills
error-detective skill from rmyndharis/antigravity-skills
backend-architect skill from rmyndharis/antigravity-skills
frontend-developer skill from rmyndharis/antigravity-skills
fastapi-pro skill from rmyndharis/antigravity-skills
performance-engineer skill from rmyndharis/antigravity-skills
kubernetes-architect skill from rmyndharis/antigravity-skills