🎯

spark-optimization

🎯Skill

from rmyndharis/antigravity-skills

VibeIndex|
What it does

Optimizes Apache Spark jobs by applying performance tuning techniques like partitioning, caching, and memory management for efficient data processing.

πŸ“¦

Part of

rmyndharis/antigravity-skills(289 items)

spark-optimization

Installation

npm runRun npm script
npm run build:catalog
npxRun with npx
npx @rmyndharis/antigravity-skills search <query>
npxRun with npx
npx @rmyndharis/antigravity-skills search kubernetes
npxRun with npx
npx @rmyndharis/antigravity-skills list
npxRun with npx
npx @rmyndharis/antigravity-skills install <skill-name>

+ 15 more commands

πŸ“– Extracted from docs: rmyndharis/antigravity-skills
10Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Optimize Apache Spark jobs with partitioning, caching, shuffle optimization, and memory tuning. Use when improving Spark performance, debugging slow jobs, or scaling data processing pipelines.

Overview

# Apache Spark Optimization

Production patterns for optimizing Apache Spark jobs including partitioning strategies, memory management, shuffle optimization, and performance tuning.

Do not use this skill when

  • The task is unrelated to apache spark optimization
  • You need a different domain or tool outside this scope

Instructions

  • Clarify goals, constraints, and required inputs.
  • Apply relevant best practices and validate outcomes.
  • Provide actionable steps and verification.
  • If detailed examples are required, open resources/implementation-playbook.md.

Use this skill when

  • Optimizing slow Spark jobs
  • Tuning memory and executor configuration
  • Implementing efficient partitioning strategies
  • Debugging Spark performance issues
  • Scaling Spark pipelines for large datasets
  • Reducing shuffle and data skew

Core Concepts

1. Spark Execution Model

```

Driver Program

↓

Job (triggered by action)

↓

Stages (separated by shuffles)

↓

Tasks (one per partition)

```

2. Key Performance Factors

| Factor | Impact | Solution |

|--------|--------|----------|

| Shuffle | Network I/O, disk I/O | Minimize wide transformations |

| Data Skew | Uneven task duration | Salting, broadcast joins |

| Serialization | CPU overhead | Use Kryo, columnar formats |

| Memory | GC pressure, spills | Tune executor memory |

| Partitions | Parallelism | Right-size partitions |

Quick Start

```python

from pyspark.sql import SparkSession

from pyspark.sql import functions as F

# Create optimized Spark session

spark = (SparkSession.builder

.appName("OptimizedJob")

.config("spark.sql.adaptive.enabled", "true")

.config("spark.sql.adaptive.coalescePartitions.enabled", "true")

.config("spark.sql.adaptive.skewJoin.enabled", "true")

.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

.config("spark.sql.shuffle.partitions", "200")

.getOrCreate())

# Read with optimized settings

df = (spark.read

.format("parquet")

.option("mergeSchema", "false")

.load("s3://bucket/data/"))

# Efficient transformations

result = (df

.filter(F.col("date") >= "2024-01-01")

.select("id", "amount", "category")

.groupBy("category")

.agg(F.sum("amount").alias("total")))

result.write.mode("overwrite").parquet("s3://bucket/output/")

```

Patterns

Pattern 1: Optimal Partitioning

```python

# Calculate optimal partition count

def calculate_partitions(data_size_gb: float, partition_size_mb: int = 128) -> int:

"""

Optimal partition size: 128MB - 256MB

Too few: Under-utilization, memory pressure

Too many: Task scheduling overhead

"""

return max(int(data_size_gb * 1024 / partition_size_mb), 1)

# Repartition for even distribution

df_repartitioned = df.repartition(200, "partition_key")

# Coalesce to reduce partitions (no shuffle)

df_coalesced = df.coalesce(100)

# Partition pruning with predicate pushdown

df = (spark.read.parquet("s3://bucket/data/")

.filter(F.col("date") == "2024-01-01")) # Spark pushes this down

# Write with partitioning for future queries

(df.write

.partitionBy("year", "month", "day")

.mode("overwrite")

.parquet("s3://bucket/partitioned_output/"))

```

Pattern 2: Join Optimization

```python

from pyspark.sql import functions as F

from pyspark.sql.types import *

# 1. Broadcast Join - Small table joins

# Best when: One side < 10MB (configurable)

small_df = spark.read.parquet("s3://bucket/small_table/") # < 10MB

large_df = spark.read.parquet("s3://bucket/large_table/") # TBs

# Explicit broadcast hint

result = large_df.join(

F.broadcast(small_df),

on="key",

how="left"

)

# 2. Sort-Merge Join - Default for large tables

# Requires shuffle, but handles any size

result = large_df1.join(large_df2, on="key", how="inner")

# 3. Bucket Join - Pre-sorted, no shuffle at join time

# Write bucketed tables

(df.write

.bucketBy(200, "customer_id")

.sortBy("customer_id")

.mode("overwrite")

.saveAsTable("bucketed_orders"))

# Join bucketed tables (no shuffle!)

orders = spark.table("bucketed_orders")

customers = spark.table("bucketed_customers") # Same bucket count

result = orders.join(customers, on="customer_id")

# 4. Skew Join Handling

# Enable AQE skew join optimization

spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionFactor", "5")

spark.conf.set("spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes", "256MB")

# Manual salting for severe skew

def salt_join(df_skewed, df_other, key_col, num_salts=10):

"""Add salt to distribute skewed keys"""

# Add salt to skewed side

df_salted = df_skewed.withColumn(

"salt",

(F.rand() * num_salts).cast("int")

).withColumn(

"salted_key",

F.concat(F.col(key_col), F.lit("_"), F.col("salt"))

)

# Explode other side with all salts

df_exploded = df_other.crossJoin(

spark.range(num_salts).withColumnRenamed("id", "salt")

).withColumn(

"salted_key",

F.concat(F.col(key_col), F.lit("_"), F.col("salt"))

)

# Join on salted key

return df_salted.join(df_exploded, on="salted_key", how="inner")

```

Pattern 3: Caching and Persistence

```python

from pyspark import StorageLevel

# Cache when reusing DataFrame multiple times

df = spark.read.parquet("s3://bucket/data/")

df_filtered = df.filter(F.col("status") == "active")

# Cache in memory (MEMORY_AND_DISK is default)

df_filtered.cache()

# Or with specific storage level

df_filtered.persist(StorageLevel.MEMORY_AND_DISK_SER)

# Force materialization

df_filtered.count()

# Use in multiple actions

agg1 = df_filtered.groupBy("category").count()

agg2 = df_filtered.groupBy("region").sum("amount")

# Unpersist when done

df_filtered.unpersist()

# Storage levels explained:

# MEMORY_ONLY - Fast, but may not fit

# MEMORY_AND_DISK - Spills to disk if needed (recommended)

# MEMORY_ONLY_SER - Serialized, less memory, more CPU

# DISK_ONLY - When memory is tight

# OFF_HEAP - Tungsten off-heap memory

# Checkpoint for complex lineage

spark.sparkContext.setCheckpointDir("s3://bucket/checkpoints/")

df_complex = (df

.join(other_df, "key")

.groupBy("category")

.agg(F.sum("amount")))

df_complex.checkpoint() # Breaks lineage, materializes

```

Pattern 4: Memory Tuning

```python

# Executor memory configuration

# spark-submit --executor-memory 8g --executor-cores 4

# Memory breakdown (8GB executor):

# - spark.memory.fraction = 0.6 (60% = 4.8GB for execution + storage)

# - spark.memory.storageFraction = 0.5 (50% of 4.8GB = 2.4GB for cache)

# - Remaining 2.4GB for execution (shuffles, joins, sorts)

# - 40% = 3.2GB for user data structures and internal metadata

spark = (SparkSession.builder

.config("spark.executor.memory", "8g")

.config("spark.executor.memoryOverhead", "2g") # For non-JVM memory

.config("spark.memory.fraction", "0.6")

.config("spark.memory.storageFraction", "0.5")

.config("spark.sql.shuffle.partitions", "200")

# For memory-intensive operations

.config("spark.sql.autoBroadcastJoinThreshold", "50MB")

# Prevent OOM on large shuffles

.config("spark.sql.files.maxPartitionBytes", "128MB")

.getOrCreate())

# Monitor memory usage

def print_memory_usage(spark):

"""Print current memory usage"""

sc = spark.sparkContext

for executor in sc._jsc.sc().getExecutorMemoryStatus().keySet().toArray():

mem_status = sc._jsc.sc().getExecutorMemoryStatus().get(executor)

total = mem_status._1() / (1024**3)

free = mem_status._2() / (1024**3)

print(f"{executor}: {total:.2f}GB total, {free:.2f}GB free")

```

Pattern 5: Shuffle Optimization

```python

# Reduce shuffle data size

spark.conf.set("spark.sql.shuffle.partitions", "auto") # With AQE

spark.conf.set("spark.shuffle.compress", "true")

spark.conf.set("spark.shuffle.spill.compress", "true")

# Pre-aggregate before shuffle

df_optimized = (df

# Local aggregation first (combiner)

.groupBy("key", "partition_col")

.agg(F.sum("value").alias("partial_sum"))

# Then global aggregation

.groupBy("key")

.agg(F.sum("partial_sum").alias("total")))

# Avoid shuffle with map-side operations

# BAD: Shuffle for each distinct

distinct_count = df.select("category").distinct().count()

# GOOD: Approximate distinct (no shuffle)

approx_count = df.select(F.approx_count_distinct("category")).collect()[0][0]

# Use coalesce instead of repartition when reducing partitions

df_reduced = df.coalesce(10) # No shuffle

# Optimize shuffle with compression

spark.conf.set("spark.io.compression.codec", "lz4") # Fast compression

```

Pattern 6: Data Format Optimization

```python

# Parquet optimizations

(df.write

.option("compression", "snappy") # Fast compression

.option("parquet.block.size", 128 1024 1024) # 128MB row groups

.parquet("s3://bucket/output/"))

# Column pruning - only read needed columns

df = (spark.read.parquet("s3://bucket/data/")

.select("id", "amount", "date")) # Spark only reads these columns

# Predicate pushdown - filter at storage level

df = (spark.read.parquet("s3://bucket/partitioned/year=2024/")

.filter(F.col("status") == "active")) # Pushed to Parquet reader

# Delta Lake optimizations

(df.write

.format("delta")

.option("optimizeWrite", "true") # Bin-packing

.option("autoCompact", "true") # Compact small files

.mode("overwrite")

.save("s3://bucket/delta_table/"))

# Z-ordering for multi-dimensional queries

spark.sql("""

OPTIMIZE delta.s3://bucket/delta_table/

ZORDER BY (customer_id, date)

""")

```

Pattern 7: Monitoring and Debugging

```python

# Enable detailed metrics

spark.conf.set("spark.sql.codegen.wholeStage", "true")

spark.conf.set("spark.sql.execution.arrow.pyspark.enabled", "true")

# Explain query plan

df.explain(mode="extended")

# Modes: simple, extended, codegen, cost, formatted

# Get physical plan statistics

df.explain(mode="cost")

# Monitor task metrics

def analyze_stage_metrics(spark):

"""Analyze recent stage metrics"""

status_tracker = spark.sparkContext.statusTracker()

for stage_id in status_tracker.getActiveStageIds():

stage_info = status_tracker.getStageInfo(stage_id)

print(f"Stage {stage_id}:")

print(f" Tasks: {stage_info.numTasks}")

print(f" Completed: {stage_info.numCompletedTasks}")

print(f" Failed: {stage_info.numFailedTasks}")

# Identify data skew

def check_partition_skew(df):

"""Check for partition skew"""

partition_counts = (df

.withColumn("partition_id", F.spark_partition_id())

.groupBy("partition_id")

.count()

.orderBy(F.desc("count")))

partition_counts.show(20)

stats = partition_counts.select(

F.min("count").alias("min"),

F.max("count").alias("max"),

F.avg("count").alias("avg"),

F.stddev("count").alias("stddev")

).collect()[0]

skew_ratio = stats["max"] / stats["avg"]

print(f"Skew ratio: {skew_ratio:.2f}x (>2x indicates skew)")

```

Configuration Cheat Sheet

```python

# Production configuration template

spark_configs = {

# Adaptive Query Execution (AQE)

"spark.sql.adaptive.enabled": "true",

"spark.sql.adaptive.coalescePartitions.enabled": "true",

"spark.sql.adaptive.skewJoin.enabled": "true",

# Memory

"spark.executor.memory": "8g",

"spark.executor.memoryOverhead": "2g",

"spark.memory.fraction": "0.6",

"spark.memory.storageFraction": "0.5",

# Parallelism

"spark.sql.shuffle.partitions": "200",

"spark.default.parallelism": "200",

# Serialization

"spark.serializer": "org.apache.spark.serializer.KryoSerializer",

"spark.sql.execution.arrow.pyspark.enabled": "true",

# Compression

"spark.io.compression.codec": "lz4",

"spark.shuffle.compress": "true",

# Broadcast

"spark.sql.autoBroadcastJoinThreshold": "50MB",

# File handling

"spark.sql.files.maxPartitionBytes": "128MB",

"spark.sql.files.openCostInBytes": "4MB",

}

```

Best Practices

Do's

  • Enable AQE - Adaptive query execution handles many issues
  • Use Parquet/Delta - Columnar formats with compression
  • Broadcast small tables - Avoid shuffle for small joins
  • Monitor Spark UI - Check for skew, spills, GC
  • Right-size partitions - 128MB - 256MB per partition

Don'ts

  • Don't collect large data - Keep data distributed
  • Don't use UDFs unnecessarily - Use built-in functions
  • Don't over-cache - Memory is limited
  • Don't ignore data skew - It dominates job time
  • Don't use .count() for existence - Use .take(1) or .isEmpty()

Resources

  • [Spark Performance Tuning](https://spark.apache.org/docs/latest/sql-performance-tuning.html)
  • [Spark Configuration](https://spark.apache.org/docs/latest/configuration.html)
  • [Databricks Optimization Guide](https://docs.databricks.com/en/optimizations/index.html)