🎯

vector-index-tuning

🎯Skill

from rmyndharis/antigravity-skills

VibeIndex|
What it does

Optimizes vector index performance by tuning HNSW parameters, quantization strategies, and scaling search infrastructure for latency, recall, and memory efficiency.

πŸ“¦

Part of

rmyndharis/antigravity-skills(289 items)

vector-index-tuning

Installation

npm runRun npm script
npm run build:catalog
npxRun with npx
npx @rmyndharis/antigravity-skills search <query>
npxRun with npx
npx @rmyndharis/antigravity-skills search kubernetes
npxRun with npx
npx @rmyndharis/antigravity-skills list
npxRun with npx
npx @rmyndharis/antigravity-skills install <skill-name>

+ 15 more commands

πŸ“– Extracted from docs: rmyndharis/antigravity-skills
11Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Optimize vector index performance for latency, recall, and memory. Use when tuning HNSW parameters, selecting quantization strategies, or scaling vector search infrastructure.

Overview

# Vector Index Tuning

Guide to optimizing vector indexes for production performance.

Use this skill when

  • Tuning HNSW parameters
  • Implementing quantization
  • Optimizing memory usage
  • Reducing search latency
  • Balancing recall vs speed
  • Scaling to billions of vectors

Do not use this skill when

  • You only need exact search on small datasets (use a flat index)
  • You lack workload metrics or ground truth to validate recall
  • You need end-to-end retrieval system design beyond index tuning

Instructions

  1. Gather workload targets (latency, recall, QPS), data size, and memory budget.
  2. Choose an index type and establish a baseline with default parameters.
  3. Benchmark parameter sweeps using real queries and track recall, latency, and memory.
  4. Validate changes on a staging dataset before rolling out to production.

Refer to resources/implementation-playbook.md for detailed patterns, checklists, and templates.

Safety

  • Avoid reindexing in production without a rollback plan.
  • Validate changes under realistic load before applying globally.
  • Track recall regressions and revert if quality drops.

Resources

  • resources/implementation-playbook.md for detailed patterns, checklists, and templates.