agentic-jujutsu
π―Skillfrom ruvnet/claude-flow
Enables quantum-resistant, self-learning version control for multiple AI agents with intelligent conflict resolution and pattern recognition.
Installation
npx skills add https://github.com/ruvnet/claude-flow --skill agentic-jujutsuSkill Details
Quantum-resistant, self-learning version control for AI agents with ReasoningBank intelligence and multi-agent coordination
Overview
# Agentic Jujutsu - AI Agent Version Control
> Quantum-ready, self-learning version control designed for multiple AI agents working simultaneously without conflicts.
When to Use This Skill
Use agentic-jujutsu when you need:
- β Multiple AI agents modifying code simultaneously
- β Lock-free version control (23x faster than Git)
- β Self-learning AI that improves from experience
- β Quantum-resistant security for future-proof protection
- β Automatic conflict resolution (87% success rate)
- β Pattern recognition and intelligent suggestions
- β Multi-agent coordination without blocking
Quick Start
Installation
```bash
npx agentic-jujutsu
```
Basic Usage
```javascript
const { JjWrapper } = require('agentic-jujutsu');
const jj = new JjWrapper();
// Basic operations
await jj.status();
await jj.newCommit('Add feature');
await jj.log(10);
// Self-learning trajectory
const id = jj.startTrajectory('Implement authentication');
await jj.branchCreate('feature/auth');
await jj.newCommit('Add auth');
jj.addToTrajectory();
jj.finalizeTrajectory(0.9, 'Clean implementation');
// Get AI suggestions
const suggestion = JSON.parse(jj.getSuggestion('Add logout feature'));
console.log(Confidence: ${suggestion.confidence});
```
Core Capabilities
1. Self-Learning with ReasoningBank
Track operations, learn patterns, and get intelligent suggestions:
```javascript
// Start learning trajectory
const trajectoryId = jj.startTrajectory('Deploy to production');
// Perform operations (automatically tracked)
await jj.execute(['git', 'push', 'origin', 'main']);
await jj.branchCreate('release/v1.0');
await jj.newCommit('Release v1.0');
// Record operations to trajectory
jj.addToTrajectory();
// Finalize with success score (0.0-1.0) and critique
jj.finalizeTrajectory(0.95, 'Deployment successful, no issues');
// Later: Get AI-powered suggestions for similar tasks
const suggestion = JSON.parse(jj.getSuggestion('Deploy to staging'));
console.log('AI Recommendation:', suggestion.reasoning);
console.log('Confidence:', (suggestion.confidence * 100).toFixed(1) + '%');
console.log('Expected Success:', (suggestion.expectedSuccessRate * 100).toFixed(1) + '%');
```
Validation (v2.3.1):
- β Tasks must be non-empty (max 10KB)
- β Success scores must be 0.0-1.0
- β Must have operations before finalizing
- β Contexts cannot be empty
2. Pattern Discovery
Automatically identify successful operation sequences:
```javascript
// Get discovered patterns
const patterns = JSON.parse(jj.getPatterns());
patterns.forEach(pattern => {
console.log(Pattern: ${pattern.name});
console.log( Success rate: ${(pattern.successRate * 100).toFixed(1)}%);
console.log( Used ${pattern.observationCount} times);
console.log( Operations: ${pattern.operationSequence.join(' β ')});
console.log( Confidence: ${(pattern.confidence * 100).toFixed(1)}%);
});
```
3. Learning Statistics
Track improvement over time:
```javascript
const stats = JSON.parse(jj.getLearningStats());
console.log('Learning Progress:');
console.log( Total trajectories: ${stats.totalTrajectories});
console.log( Patterns discovered: ${stats.totalPatterns});
console.log( Average success: ${(stats.avgSuccessRate * 100).toFixed(1)}%);
console.log( Improvement rate: ${(stats.improvementRate * 100).toFixed(1)}%);
console.log( Prediction accuracy: ${(stats.predictionAccuracy * 100).toFixed(1)}%);
```
4. Multi-Agent Coordination
Multiple agents work concurrently without conflicts:
```javascript
// Agent 1: Developer
const dev = new JjWrapper();
dev.startTrajectory('Implement feature');
await dev.newCommit('Add feature X');
dev.addToTrajectory();
dev.finalizeTrajectory(0.85);
// Agent 2: Reviewer (learns from Agent 1)
const reviewer = new JjWrapper();
const suggestion = JSON.parse(reviewer.getSuggestion('Review feature X'));
if (suggestion.confidence > 0.7) {
console.log('High confidence approach:', suggestion.reasoning);
}
// Agent 3: Tester (benefits from both)
const tester = new JjWrapper();
const similar = JSON.parse(tester.queryTrajectories('test feature', 5));
console.log(Found ${similar.length} similar test approaches);
```
5. Quantum-Resistant Security (v2.3.0+)
Fast integrity verification with quantum-resistant cryptography:
```javascript
const { generateQuantumFingerprint, verifyQuantumFingerprint } = require('agentic-jujutsu');
// Generate SHA3-512 fingerprint (NIST FIPS 202)
const data = Buffer.from('commit-data');
const fingerprint = generateQuantumFingerprint(data);
console.log('Fingerprint:', fingerprint.toString('hex'));
// Verify integrity (<1ms)
const isValid = verifyQuantumFingerprint(data, fingerprint);
console.log('Valid:', isValid);
// HQC-128 encryption for trajectories
const crypto = require('crypto');
const key = crypto.randomBytes(32).toString('base64');
jj.enableEncryption(key);
```
6. Operation Tracking with AgentDB
Automatic tracking of all operations:
```javascript
// Operations are tracked automatically
await jj.status();
await jj.newCommit('Fix bug');
await jj.rebase('main');
// Get operation statistics
const stats = JSON.parse(jj.getStats());
console.log(Total operations: ${stats.total_operations});
console.log(Success rate: ${(stats.success_rate * 100).toFixed(1)}%);
console.log(Avg duration: ${stats.avg_duration_ms.toFixed(2)}ms);
// Query recent operations
const ops = jj.getOperations(10);
ops.forEach(op => {
console.log(${op.operationType}: ${op.command});
console.log( Duration: ${op.durationMs}ms, Success: ${op.success});
});
// Get user operations (excludes snapshots)
const userOps = jj.getUserOperations(20);
```
Advanced Use Cases
Use Case 1: Adaptive Workflow Optimization
Learn and improve deployment workflows:
```javascript
async function adaptiveDeployment(jj, environment) {
// Get AI suggestion based on past deployments
const suggestion = JSON.parse(jj.getSuggestion(Deploy to ${environment}));
console.log(Deploying with ${(suggestion.confidence * 100).toFixed(0)}% confidence);
console.log(Expected duration: ${suggestion.estimatedDurationMs}ms);
// Start tracking
jj.startTrajectory(Deploy to ${environment});
// Execute recommended operations
for (const op of suggestion.recommendedOperations) {
console.log(Executing: ${op});
await executeOperation(op);
}
jj.addToTrajectory();
// Record outcome
const success = await verifyDeployment();
jj.finalizeTrajectory(
success ? 0.95 : 0.5,
success ? 'Deployment successful' : 'Issues detected'
);
}
```
Use Case 2: Multi-Agent Code Review
Coordinate review across multiple agents:
```javascript
async function coordinatedReview(agents) {
const reviews = await Promise.all(agents.map(async (agent) => {
const jj = new JjWrapper();
// Start review trajectory
jj.startTrajectory(Review by ${agent.name});
// Get AI suggestion for review approach
const suggestion = JSON.parse(jj.getSuggestion('Code review'));
// Perform review
const diff = await jj.diff('@', '@-');
const issues = await agent.analyze(diff);
jj.addToTrajectory();
jj.finalizeTrajectory(
issues.length === 0 ? 0.9 : 0.6,
Found ${issues.length} issues
);
return { agent: agent.name, issues, suggestion };
}));
// Aggregate learning from all agents
return reviews;
}
```
Use Case 3: Error Pattern Detection
Learn from failures to prevent future issues:
```javascript
async function smartMerge(jj, branch) {
// Query similar merge attempts
const similar = JSON.parse(jj.queryTrajectories(merge ${branch}, 10));
// Analyze past failures
const failures = similar.filter(t => t.successScore < 0.5);
if (failures.length > 0) {
console.log('β οΈ Similar merges failed in the past:');
failures.forEach(f => {
if (f.critique) {
console.log( - ${f.critique});
}
});
}
// Get AI recommendation
const suggestion = JSON.parse(jj.getSuggestion(merge ${branch}));
if (suggestion.confidence < 0.7) {
console.log('β οΈ Low confidence. Recommended steps:');
suggestion.recommendedOperations.forEach(op => console.log( - ${op}));
}
// Execute merge with tracking
jj.startTrajectory(Merge ${branch});
try {
await jj.execute(['merge', branch]);
jj.addToTrajectory();
jj.finalizeTrajectory(0.9, 'Merge successful');
} catch (err) {
jj.addToTrajectory();
jj.finalizeTrajectory(0.3, Merge failed: ${err.message});
throw err;
}
}
```
Use Case 4: Continuous Learning Loop
Implement a self-improving agent:
```javascript
class SelfImprovingAgent {
constructor() {
this.jj = new JjWrapper();
}
async performTask(taskDescription) {
// Get AI suggestion
const suggestion = JSON.parse(this.jj.getSuggestion(taskDescription));
console.log(Task: ${taskDescription});
console.log(AI Confidence: ${(suggestion.confidence * 100).toFixed(1)}%);
console.log(Expected Success: ${(suggestion.expectedSuccessRate * 100).toFixed(1)}%);
// Start trajectory
this.jj.startTrajectory(taskDescription);
// Execute with recommended approach
const startTime = Date.now();
let success = false;
try {
for (const op of suggestion.recommendedOperations) {
await this.execute(op);
}
success = true;
} catch (err) {
console.error('Task failed:', err.message);
}
const duration = Date.now() - startTime;
// Record learning
this.jj.addToTrajectory();
this.jj.finalizeTrajectory(
success ? 0.9 : 0.4,
success
? Completed in ${duration}ms using ${suggestion.recommendedOperations.length} operations
: Failed after ${duration}ms
);
// Check improvement
const stats = JSON.parse(this.jj.getLearningStats());
console.log(Improvement rate: ${(stats.improvementRate * 100).toFixed(1)}%);
return success;
}
async execute(operation) {
// Execute operation logic
}
}
// Usage
const agent = new SelfImprovingAgent();
// Agent improves over time
for (let i = 1; i <= 10; i++) {
console.log(\n--- Attempt ${i} ---);
await agent.performTask('Deploy application');
}
```
API Reference
Core Methods
| Method | Description | Returns |
|--------|-------------|---------|
| new JjWrapper() | Create wrapper instance | JjWrapper |
| status() | Get repository status | Promise
| newCommit(msg) | Create new commit | Promise
| log(limit) | Show commit history | Promise
| diff(from, to) | Show differences | Promise
| branchCreate(name, rev?) | Create branch | Promise
| rebase(source, dest) | Rebase commits | Promise
ReasoningBank Methods
| Method | Description | Returns |
|--------|-------------|---------|
| startTrajectory(task) | Begin learning trajectory | string (trajectory ID) |
| addToTrajectory() | Add recent operations | void |
| finalizeTrajectory(score, critique?) | Complete trajectory (score: 0.0-1.0) | void |
| getSuggestion(task) | Get AI recommendation | JSON: DecisionSuggestion |
| getLearningStats() | Get learning metrics | JSON: LearningStats |
| getPatterns() | Get discovered patterns | JSON: Pattern[] |
| queryTrajectories(task, limit) | Find similar trajectories | JSON: Trajectory[] |
| resetLearning() | Clear learned data | void |
AgentDB Methods
| Method | Description | Returns |
|--------|-------------|---------|
| getStats() | Get operation statistics | JSON: Stats |
| getOperations(limit) | Get recent operations | JjOperation[] |
| getUserOperations(limit) | Get user operations only | JjOperation[] |
| clearLog() | Clear operation log | void |
Quantum Security Methods (v2.3.0+)
| Method | Description | Returns |
|--------|-------------|---------|
| generateQuantumFingerprint(data) | Generate SHA3-512 fingerprint | Buffer (64 bytes) |
| verifyQuantumFingerprint(data, fp) | Verify fingerprint | boolean |
| enableEncryption(key, pubKey?) | Enable HQC-128 encryption | void |
| disableEncryption() | Disable encryption | void |
| isEncryptionEnabled() | Check encryption status | boolean |
Performance Characteristics
| Metric | Git | Agentic Jujutsu |
|--------|-----|-----------------|
| Concurrent commits | 15 ops/s | 350 ops/s (23x) |
| Context switching | 500-1000ms | 50-100ms (10x) |
| Conflict resolution | 30-40% auto | 87% auto (2.5x) |
| Lock waiting | 50 min/day | 0 min (β) |
| Quantum fingerprints | N/A | <1ms |
Best Practices
1. Trajectory Management
```javascript
// β Good: Meaningful task descriptions
jj.startTrajectory('Implement user authentication with JWT');
// β Bad: Vague descriptions
jj.startTrajectory('fix stuff');
// β Good: Honest success scores
jj.finalizeTrajectory(0.7, 'Works but needs refactoring');
// β Bad: Always 1.0
jj.finalizeTrajectory(1.0, 'Perfect!'); // Prevents learning
```
2. Pattern Recognition
```javascript
// β Good: Let patterns emerge naturally
for (let i = 0; i < 10; i++) {
jj.startTrajectory('Deploy feature');
await deploy();
jj.addToTrajectory();
jj.finalizeTrajectory(wasSuccessful ? 0.9 : 0.5);
}
// β Bad: Not recording outcomes
await deploy(); // No learning
```
3. Multi-Agent Coordination
```javascript
// β Good: Concurrent operations
const agents = ['agent1', 'agent2', 'agent3'];
await Promise.all(agents.map(async (agent) => {
const jj = new JjWrapper();
// Each agent works independently
await jj.newCommit(Changes by ${agent});
}));
// β Bad: Sequential with locks
for (const agent of agents) {
await agent.waitForLock(); // Not needed!
await agent.commit();
}
```
4. Error Handling
```javascript
// β Good: Record failures with details
try {
await jj.execute(['complex-operation']);
jj.finalizeTrajectory(0.9);
} catch (err) {
jj.finalizeTrajectory(0.3, Failed: ${err.message}. Root cause: ...);
}
// β Bad: Silent failures
try {
await jj.execute(['operation']);
} catch (err) {
// No learning from failure
}
```
Validation Rules (v2.3.1+)
Task Description
- β Cannot be empty or whitespace-only
- β Maximum length: 10,000 bytes
- β Automatically trimmed
Success Score
- β Must be finite (not NaN or Infinity)
- β Must be between 0.0 and 1.0 (inclusive)
Operations
- β Must have at least one operation before finalizing
Context
- β Cannot be empty
- β Keys cannot be empty or whitespace-only
- β Keys max 1,000 bytes, values max 10,000 bytes
Troubleshooting
Issue: Low Confidence Suggestions
```javascript
const suggestion = JSON.parse(jj.getSuggestion('new task'));
if (suggestion.confidence < 0.5) {
// Not enough data - check learning stats
const stats = JSON.parse(jj.getLearningStats());
console.log(Need more data. Current trajectories: ${stats.totalTrajectories});
// Recommend: Record 5-10 trajectories first
}
```
Issue: Validation Errors
```javascript
try {
jj.startTrajectory(''); // Empty task
} catch (err) {
if (err.message.includes('Validation error')) {
console.log('Invalid input:', err.message);
// Use non-empty, meaningful task description
}
}
try {
jj.finalizeTrajectory(1.5); // Score > 1.0
} catch (err) {
// Use score between 0.0 and 1.0
jj.finalizeTrajectory(Math.max(0, Math.min(1, score)));
}
```
Issue: No Patterns Discovered
```javascript
const patterns = JSON.parse(jj.getPatterns());
if (patterns.length === 0) {
// Need more trajectories with >70% success
// Record at least 3-5 successful trajectories
}
```
Examples
Example 1: Simple Learning Workflow
```javascript
const { JjWrapper } = require('agentic-jujutsu');
async function learnFromWork() {
const jj = new JjWrapper();
// Start tracking
jj.startTrajectory('Add user profile feature');
// Do work
await jj.branchCreate('feature/user-profile');
await jj.newCommit('Add user profile model');
await jj.newCommit('Add profile API endpoints');
await jj.newCommit('Add profile UI');
// Record operations
jj.addToTrajectory();
// Finalize with result
jj.finalizeTrajectory(0.85, 'Feature complete, minor styling issues remain');
// Next time, get suggestions
const suggestion = JSON.parse(jj.getSuggestion('Add settings page'));
console.log('AI suggests:', suggestion.reasoning);
}
```
Example 2: Multi-Agent Swarm
```javascript
async function agentSwarm(taskList) {
const agents = taskList.map((task, i) => ({
name: agent-${i},
jj: new JjWrapper(),
task
}));
// All agents work concurrently (no conflicts!)
const results = await Promise.all(agents.map(async (agent) => {
agent.jj.startTrajectory(agent.task);
// Get AI suggestion
const suggestion = JSON.parse(agent.jj.getSuggestion(agent.task));
// Execute task
const success = await executeTask(agent, suggestion);
agent.jj.addToTrajectory();
agent.jj.finalizeTrajectory(success ? 0.9 : 0.5);
return { agent: agent.name, success };
}));
console.log('Results:', results);
}
```
Related Documentation
- NPM Package: https://npmjs.com/package/agentic-jujutsu
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentic-jujutsu
- Full README: See package README.md
- Validation Guide: docs/VALIDATION_FIXES_v2.3.1.md
- AgentDB Guide: docs/AGENTDB_GUIDE.md
Version History
- v2.3.2 - Documentation updates
- v2.3.1 - Validation fixes for ReasoningBank
- v2.3.0 - Quantum-resistant security with @qudag/napi-core
- v2.1.0 - Self-learning AI with ReasoningBank
- v2.0.0 - Zero-dependency installation with embedded jj binary
---
Status: β Production Ready
License: MIT
Maintained: Active
More from this repository10
Enables developers to discover, share, and integrate specialized Claude AI plugins and agents from a community-driven marketplace.
Manages Flow Nexus platform capabilities, enabling developers to authenticate, deploy apps, manage credits, execute sandboxes, and participate in coding challenges.
Optimizes multi-control point (MCP) configurations for enterprise AI workflows, enhancing agent coordination and performance efficiency.
Manages and optimizes memory storage, retrieval, and pattern recognition for AI agents using a structured database approach.
Orchestrates multiple Claude AI agents into coordinated, self-learning swarms for enterprise-grade multi-agent AI development and deployment.
Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling enterprise-level multi-agent AI workflows with self-learning and consensus capabilities.
Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling enterprise-level multi-agent AI workflows with self-learning and consensus capabilities.
Orchestrates multiple Claude AI agents into coordinated, self-learning swarms for enterprise-level AI development and task execution.
Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling complex, collaborative problem-solving with enterprise-grade deployment and management capabilities.
Identifies and analyzes performance bottlenecks in Claude Flow swarms, generating detailed reports and providing AI-powered optimization recommendations.