🎯

flow-nexus-swarm

🎯Skill

from ruvnet/claude-flow

VibeIndex|
What it does

Orchestrates cloud-based AI agent swarms with event-driven workflows, intelligent coordination, and scalable multi-topology deployment.

flow-nexus-swarm

Installation

Install skill:
npx skills add https://github.com/ruvnet/claude-flow --skill flow-nexus-swarm
14
Last UpdatedJan 26, 2026

Skill Details

SKILL.md

Cloud-based AI swarm deployment and event-driven workflow automation with Flow Nexus platform

Overview

# Flow Nexus Swarm & Workflow Orchestration

Deploy and manage cloud-based AI agent swarms with event-driven workflow automation, message queue processing, and intelligent agent coordination.

πŸ“‹ Table of Contents

  1. [Overview](#overview)
  2. [Swarm Management](#swarm-management)
  3. [Workflow Automation](#workflow-automation)
  4. [Agent Orchestration](#agent-orchestration)
  5. [Templates & Patterns](#templates--patterns)
  6. [Advanced Features](#advanced-features)
  7. [Best Practices](#best-practices)

Overview

Flow Nexus provides cloud-based orchestration for AI agent swarms with:

  • Multi-topology Support: Hierarchical, mesh, ring, and star architectures
  • Event-driven Workflows: Message queue processing with async execution
  • Template Library: Pre-built swarm configurations for common use cases
  • Intelligent Agent Assignment: Vector similarity matching for optimal agent selection
  • Real-time Monitoring: Comprehensive metrics and audit trails
  • Scalable Infrastructure: Cloud-based execution with auto-scaling

Swarm Management

Initialize Swarm

Create a new swarm with specified topology and configuration:

```javascript

mcp__flow-nexus__swarm_init({

topology: "hierarchical", // Options: mesh, ring, star, hierarchical

maxAgents: 8,

strategy: "balanced" // Options: balanced, specialized, adaptive

})

```

Topology Guide:

  • Hierarchical: Tree structure with coordinator nodes (best for complex projects)
  • Mesh: Peer-to-peer collaboration (best for research and analysis)
  • Ring: Circular coordination (best for sequential workflows)
  • Star: Centralized hub (best for simple delegation)

Strategy Guide:

  • Balanced: Equal distribution of workload across agents
  • Specialized: Agents focus on specific expertise areas
  • Adaptive: Dynamic adjustment based on task complexity

Spawn Agents

Add specialized agents to the swarm:

```javascript

mcp__flow-nexus__agent_spawn({

type: "researcher", // Options: researcher, coder, analyst, optimizer, coordinator

name: "Lead Researcher",

capabilities: ["web_search", "analysis", "summarization"]

})

```

Agent Types:

  • Researcher: Information gathering, web search, analysis
  • Coder: Code generation, refactoring, implementation
  • Analyst: Data analysis, pattern recognition, insights
  • Optimizer: Performance tuning, resource optimization
  • Coordinator: Task delegation, progress tracking, integration

Orchestrate Tasks

Distribute tasks across the swarm:

```javascript

mcp__flow-nexus__task_orchestrate({

task: "Build a REST API with authentication and database integration",

strategy: "parallel", // Options: parallel, sequential, adaptive

maxAgents: 5,

priority: "high" // Options: low, medium, high, critical

})

```

Execution Strategies:

  • Parallel: Maximum concurrency for independent subtasks
  • Sequential: Step-by-step execution with dependencies
  • Adaptive: AI-powered strategy selection based on task analysis

Monitor & Scale Swarms

```javascript

// Get detailed swarm status

mcp__flow-nexus__swarm_status({

swarm_id: "optional-id" // Uses active swarm if not provided

})

// List all active swarms

mcp__flow-nexus__swarm_list({

status: "active" // Options: active, destroyed, all

})

// Scale swarm up or down

mcp__flow-nexus__swarm_scale({

target_agents: 10,

swarm_id: "optional-id"

})

// Gracefully destroy swarm

mcp__flow-nexus__swarm_destroy({

swarm_id: "optional-id"

})

```

Workflow Automation

Create Workflow

Define event-driven workflows with message queue processing:

```javascript

mcp__flow-nexus__workflow_create({

name: "CI/CD Pipeline",

description: "Automated testing, building, and deployment",

steps: [

{

id: "test",

action: "run_tests",

agent: "tester",

parallel: true

},

{

id: "build",

action: "build_app",

agent: "builder",

depends_on: ["test"]

},

{

id: "deploy",

action: "deploy_prod",

agent: "deployer",

depends_on: ["build"]

}

],

triggers: ["push_to_main", "manual_trigger"],

metadata: {

priority: 10,

retry_policy: "exponential_backoff"

}

})

```

Workflow Features:

  • Dependency Management: Define step dependencies with depends_on
  • Parallel Execution: Set parallel: true for concurrent steps
  • Event Triggers: GitHub events, schedules, manual triggers
  • Retry Policies: Automatic retry on transient failures
  • Priority Queuing: High-priority workflows execute first

Execute Workflow

Run workflows synchronously or asynchronously:

```javascript

mcp__flow-nexus__workflow_execute({

workflow_id: "workflow_id",

input_data: {

branch: "main",

commit: "abc123",

environment: "production"

},

async: true // Queue-based execution for long-running workflows

})

```

Execution Modes:

  • Sync (async: false): Immediate execution, wait for completion
  • Async (async: true): Message queue processing, non-blocking

Monitor Workflows

```javascript

// Get workflow status and metrics

mcp__flow-nexus__workflow_status({

workflow_id: "id",

execution_id: "specific-run-id", // Optional

include_metrics: true

})

// List workflows with filters

mcp__flow-nexus__workflow_list({

status: "running", // Options: running, completed, failed, pending

limit: 10,

offset: 0

})

// Get complete audit trail

mcp__flow-nexus__workflow_audit_trail({

workflow_id: "id",

limit: 50,

start_time: "2025-01-01T00:00:00Z"

})

```

Agent Assignment

Intelligently assign agents to workflow tasks:

```javascript

mcp__flow-nexus__workflow_agent_assign({

task_id: "task_id",

agent_type: "coder", // Preferred agent type

use_vector_similarity: true // AI-powered capability matching

})

```

Vector Similarity Matching:

  • Analyzes task requirements and agent capabilities
  • Finds optimal agent based on past performance
  • Considers workload and availability

Queue Management

Monitor and manage message queues:

```javascript

mcp__flow-nexus__workflow_queue_status({

queue_name: "optional-specific-queue",

include_messages: true // Show pending messages

})

```

Agent Orchestration

Full-Stack Development Pattern

```javascript

// 1. Initialize swarm with hierarchical topology

mcp__flow-nexus__swarm_init({

topology: "hierarchical",

maxAgents: 8,

strategy: "specialized"

})

// 2. Spawn specialized agents

mcp__flow-nexus__agent_spawn({ type: "coordinator", name: "Project Manager" })

mcp__flow-nexus__agent_spawn({ type: "coder", name: "Backend Developer" })

mcp__flow-nexus__agent_spawn({ type: "coder", name: "Frontend Developer" })

mcp__flow-nexus__agent_spawn({ type: "coder", name: "Database Architect" })

mcp__flow-nexus__agent_spawn({ type: "analyst", name: "QA Engineer" })

// 3. Create development workflow

mcp__flow-nexus__workflow_create({

name: "Full-Stack Development",

steps: [

{ id: "requirements", action: "analyze_requirements", agent: "coordinator" },

{ id: "db_design", action: "design_schema", agent: "Database Architect" },

{ id: "backend", action: "build_api", agent: "Backend Developer", depends_on: ["db_design"] },

{ id: "frontend", action: "build_ui", agent: "Frontend Developer", depends_on: ["requirements"] },

{ id: "integration", action: "integrate", agent: "Backend Developer", depends_on: ["backend", "frontend"] },

{ id: "testing", action: "qa_testing", agent: "QA Engineer", depends_on: ["integration"] }

]

})

// 4. Execute workflow

mcp__flow-nexus__workflow_execute({

workflow_id: "workflow_id",

input_data: {

project: "E-commerce Platform",

tech_stack: ["Node.js", "React", "PostgreSQL"]

}

})

```

Research & Analysis Pattern

```javascript

// 1. Initialize mesh topology for collaborative research

mcp__flow-nexus__swarm_init({

topology: "mesh",

maxAgents: 5,

strategy: "balanced"

})

// 2. Spawn research agents

mcp__flow-nexus__agent_spawn({ type: "researcher", name: "Primary Researcher" })

mcp__flow-nexus__agent_spawn({ type: "researcher", name: "Secondary Researcher" })

mcp__flow-nexus__agent_spawn({ type: "analyst", name: "Data Analyst" })

mcp__flow-nexus__agent_spawn({ type: "analyst", name: "Insights Analyst" })

// 3. Orchestrate research task

mcp__flow-nexus__task_orchestrate({

task: "Research machine learning trends for 2025 and analyze market opportunities",

strategy: "parallel",

maxAgents: 4,

priority: "high"

})

```

CI/CD Pipeline Pattern

```javascript

mcp__flow-nexus__workflow_create({

name: "Deployment Pipeline",

description: "Automated testing, building, and multi-environment deployment",

steps: [

{ id: "lint", action: "lint_code", agent: "code_quality", parallel: true },

{ id: "unit_test", action: "unit_tests", agent: "test_runner", parallel: true },

{ id: "integration_test", action: "integration_tests", agent: "test_runner", parallel: true },

{ id: "build", action: "build_artifacts", agent: "builder", depends_on: ["lint", "unit_test", "integration_test"] },

{ id: "security_scan", action: "security_scan", agent: "security", depends_on: ["build"] },

{ id: "deploy_staging", action: "deploy", agent: "deployer", depends_on: ["security_scan"] },

{ id: "smoke_test", action: "smoke_tests", agent: "test_runner", depends_on: ["deploy_staging"] },

{ id: "deploy_prod", action: "deploy", agent: "deployer", depends_on: ["smoke_test"] }

],

triggers: ["github_push", "github_pr_merged"],

metadata: {

priority: 10,

auto_rollback: true

}

})

```

Data Processing Pipeline Pattern

```javascript

mcp__flow-nexus__workflow_create({

name: "ETL Pipeline",

description: "Extract, Transform, Load data processing",

steps: [

{ id: "extract", action: "extract_data", agent: "data_extractor" },

{ id: "validate_raw", action: "validate_data", agent: "validator", depends_on: ["extract"] },

{ id: "transform", action: "transform_data", agent: "transformer", depends_on: ["validate_raw"] },

{ id: "enrich", action: "enrich_data", agent: "enricher", depends_on: ["transform"] },

{ id: "load", action: "load_data", agent: "loader", depends_on: ["enrich"] },

{ id: "validate_final", action: "validate_data", agent: "validator", depends_on: ["load"] }

],

triggers: ["schedule:0 2 *"], // Daily at 2 AM

metadata: {

retry_policy: "exponential_backoff",

max_retries: 3

}

})

```

Templates & Patterns

Use Pre-built Templates

```javascript

// Create swarm from template

mcp__flow-nexus__swarm_create_from_template({

template_name: "full-stack-dev",

overrides: {

maxAgents: 6,

strategy: "specialized"

}

})

// List available templates

mcp__flow-nexus__swarm_templates_list({

category: "quickstart", // Options: quickstart, specialized, enterprise, custom, all

includeStore: true

})

```

Available Template Categories:

Quickstart Templates:

  • full-stack-dev: Complete web development swarm
  • research-team: Research and analysis swarm
  • code-review: Automated code review swarm
  • data-pipeline: ETL and data processing

Specialized Templates:

  • ml-development: Machine learning project swarm
  • mobile-dev: Mobile app development
  • devops-automation: Infrastructure and deployment
  • security-audit: Security analysis and testing

Enterprise Templates:

  • enterprise-migration: Large-scale system migration
  • multi-repo-sync: Multi-repository coordination
  • compliance-review: Regulatory compliance workflows
  • incident-response: Automated incident management

Custom Template Creation

Save successful swarm configurations as reusable templates for future projects.

Advanced Features

Real-time Monitoring

```javascript

// Subscribe to execution streams

mcp__flow-nexus__execution_stream_subscribe({

stream_type: "claude-flow-swarm",

deployment_id: "deployment_id"

})

// Get execution status

mcp__flow-nexus__execution_stream_status({

stream_id: "stream_id"

})

// List files created during execution

mcp__flow-nexus__execution_files_list({

stream_id: "stream_id",

created_by: "claude-flow"

})

```

Swarm Metrics & Analytics

```javascript

// Get swarm performance metrics

mcp__flow-nexus__swarm_status({

swarm_id: "id"

})

// Analyze workflow efficiency

mcp__flow-nexus__workflow_status({

workflow_id: "id",

include_metrics: true

})

```

Multi-Swarm Coordination

Coordinate multiple swarms for complex, multi-phase projects:

```javascript

// Phase 1: Research swarm

const researchSwarm = await mcp__flow-nexus__swarm_init({

topology: "mesh",

maxAgents: 4

})

// Phase 2: Development swarm

const devSwarm = await mcp__flow-nexus__swarm_init({

topology: "hierarchical",

maxAgents: 8

})

// Phase 3: Testing swarm

const testSwarm = await mcp__flow-nexus__swarm_init({

topology: "star",

maxAgents: 5

})

```

Best Practices

1. Choose the Right Topology

```javascript

// Simple projects: Star

mcp__flow-nexus__swarm_init({ topology: "star", maxAgents: 3 })

// Collaborative work: Mesh

mcp__flow-nexus__swarm_init({ topology: "mesh", maxAgents: 5 })

// Complex projects: Hierarchical

mcp__flow-nexus__swarm_init({ topology: "hierarchical", maxAgents: 10 })

// Sequential workflows: Ring

mcp__flow-nexus__swarm_init({ topology: "ring", maxAgents: 4 })

```

2. Optimize Agent Assignment

```javascript

// Use vector similarity for optimal matching

mcp__flow-nexus__workflow_agent_assign({

task_id: "complex-task",

use_vector_similarity: true

})

```

3. Implement Proper Error Handling

```javascript

mcp__flow-nexus__workflow_create({

name: "Resilient Workflow",

steps: [...],

metadata: {

retry_policy: "exponential_backoff",

max_retries: 3,

timeout: 300000, // 5 minutes

on_failure: "notify_and_rollback"

}

})

```

4. Monitor and Scale

```javascript

// Regular monitoring

const status = await mcp__flow-nexus__swarm_status()

// Scale based on workload

if (status.workload > 0.8) {

await mcp__flow-nexus__swarm_scale({ target_agents: status.agents + 2 })

}

```

5. Use Async Execution for Long-Running Workflows

```javascript

// Long-running workflows should use message queues

mcp__flow-nexus__workflow_execute({

workflow_id: "data-pipeline",

async: true // Non-blocking execution

})

// Monitor progress

mcp__flow-nexus__workflow_queue_status({ include_messages: true })

```

6. Clean Up Resources

```javascript

// Destroy swarm when complete

mcp__flow-nexus__swarm_destroy({ swarm_id: "id" })

```

7. Leverage Templates

```javascript

// Use proven templates instead of building from scratch

mcp__flow-nexus__swarm_create_from_template({

template_name: "code-review",

overrides: { maxAgents: 4 }

})

```

Integration with Claude Flow

Flow Nexus swarms integrate seamlessly with Claude Flow hooks:

```bash

# Pre-task coordination setup

npx claude-flow@alpha hooks pre-task --description "Initialize swarm"

# Post-task metrics export

npx claude-flow@alpha hooks post-task --task-id "swarm-execution"

```

Common Use Cases

1. Multi-Repo Development

  • Coordinate development across multiple repositories
  • Synchronized testing and deployment
  • Cross-repo dependency management

2. Research Projects

  • Distributed information gathering
  • Parallel analysis of different data sources
  • Collaborative synthesis and reporting

3. DevOps Automation

  • Infrastructure as Code deployment
  • Multi-environment testing
  • Automated rollback and recovery

4. Code Quality Workflows

  • Automated code review
  • Security scanning
  • Performance benchmarking

5. Data Processing

  • Large-scale ETL pipelines
  • Real-time data transformation
  • Data validation and quality checks

Authentication & Setup

```bash

# Install Flow Nexus

npm install -g flow-nexus@latest

# Register account

npx flow-nexus@latest register

# Login

npx flow-nexus@latest login

# Add MCP server to Claude Code

claude mcp add flow-nexus npx flow-nexus@latest mcp start

```

Support & Resources

  • Platform: https://flow-nexus.ruv.io
  • Documentation: https://github.com/ruvnet/flow-nexus
  • Issues: https://github.com/ruvnet/flow-nexus/issues

---

Remember: Flow Nexus provides cloud-based orchestration infrastructure. For local execution and coordination, use the core claude-flow MCP server alongside Flow Nexus for maximum flexibility.

More from this repository10

πŸͺ
ruvnet-claude-flowπŸͺMarketplace

Enables developers to discover, share, and integrate specialized Claude AI plugins and agents from a community-driven marketplace.

🎯
flow-nexus-platform🎯Skill

Manages Flow Nexus platform capabilities, enabling developers to authenticate, deploy apps, manage credits, execute sandboxes, and participate in coding challenges.

🎯
agentdb memory patterns🎯Skill

Manages and optimizes memory storage, retrieval, and pattern recognition for AI agents using a structured database approach.

🎯
v3 mcp optimization🎯Skill

Optimizes multi-control point (MCP) configurations for enterprise AI workflows, enhancing agent coordination and performance efficiency.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates multiple Claude AI agents into coordinated, self-learning swarms for enterprise-grade multi-agent AI development and deployment.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling enterprise-level multi-agent AI workflows with self-learning and consensus capabilities.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling enterprise-level multi-agent AI workflows with self-learning and consensus capabilities.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates multiple Claude AI agents into coordinated, self-learning swarms for enterprise-level AI development and task execution.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling complex, collaborative problem-solving with enterprise-grade deployment and management capabilities.

🎯
performance-analysis🎯Skill

Identifies and analyzes performance bottlenecks in Claude Flow swarms, generating detailed reports and providing AI-powered optimization recommendations.