🎯

performance-analysis

🎯Skill

from ruvnet/claude-flow

VibeIndex|
What it does

Identifies and analyzes performance bottlenecks in Claude Flow swarms, generating detailed reports and providing AI-powered optimization recommendations.

performance-analysis

Installation

Install skill:
npx skills add https://github.com/ruvnet/claude-flow --skill performance-analysis
21
Last UpdatedJan 26, 2026

Skill Details

SKILL.md

Comprehensive performance analysis, bottleneck detection, and optimization recommendations for Claude Flow swarms

Overview

# Performance Analysis Skill

Comprehensive performance analysis suite for identifying bottlenecks, profiling swarm operations, generating detailed reports, and providing actionable optimization recommendations.

Overview

This skill consolidates all performance analysis capabilities:

  • Bottleneck Detection: Identify performance bottlenecks across communication, processing, memory, and network
  • Performance Profiling: Real-time monitoring and historical analysis of swarm operations
  • Report Generation: Create comprehensive performance reports in multiple formats
  • Optimization Recommendations: AI-powered suggestions for improving performance

Quick Start

Basic Bottleneck Detection

```bash

npx claude-flow bottleneck detect

```

Generate Performance Report

```bash

npx claude-flow analysis performance-report --format html --include-metrics

```

Analyze and Auto-Fix

```bash

npx claude-flow bottleneck detect --fix --threshold 15

```

Core Capabilities

1. Bottleneck Detection

#### Command Syntax

```bash

npx claude-flow bottleneck detect [options]

```

#### Options

  • --swarm-id, -s - Analyze specific swarm (default: current)
  • --time-range, -t - Analysis period: 1h, 24h, 7d, all (default: 1h)
  • --threshold - Bottleneck threshold percentage (default: 20)
  • --export, -e - Export analysis to file
  • --fix - Apply automatic optimizations

#### Usage Examples

```bash

# Basic detection for current swarm

npx claude-flow bottleneck detect

# Analyze specific swarm over 24 hours

npx claude-flow bottleneck detect --swarm-id swarm-123 -t 24h

# Export detailed analysis

npx claude-flow bottleneck detect -t 24h -e bottlenecks.json

# Auto-fix detected issues

npx claude-flow bottleneck detect --fix --threshold 15

# Low threshold for sensitive detection

npx claude-flow bottleneck detect --threshold 10 --export critical-issues.json

```

#### Metrics Analyzed

Communication Bottlenecks:

  • Message queue delays
  • Agent response times
  • Coordination overhead
  • Memory access patterns
  • Inter-agent communication latency

Processing Bottlenecks:

  • Task completion times
  • Agent utilization rates
  • Parallel execution efficiency
  • Resource contention
  • CPU/memory usage patterns

Memory Bottlenecks:

  • Cache hit rates
  • Memory access patterns
  • Storage I/O performance
  • Neural pattern loading times
  • Memory allocation efficiency

Network Bottlenecks:

  • API call latency
  • MCP communication delays
  • External service timeouts
  • Concurrent request limits
  • Network throughput issues

#### Output Format

```

πŸ” Bottleneck Analysis Report

━━━━━━━━━━━━━━━━━━━━━━━━━━━

πŸ“Š Summary

β”œβ”€β”€ Time Range: Last 1 hour

β”œβ”€β”€ Agents Analyzed: 6

β”œβ”€β”€ Tasks Processed: 42

└── Critical Issues: 2

🚨 Critical Bottlenecks

  1. Agent Communication (35% impact)

└── coordinator β†’ coder-1 messages delayed by 2.3s avg

  1. Memory Access (28% impact)

└── Neural pattern loading taking 1.8s per access

⚠️ Warning Bottlenecks

  1. Task Queue (18% impact)

└── 5 tasks waiting > 10s for assignment

πŸ’‘ Recommendations

  1. Switch to hierarchical topology (est. 40% improvement)
  2. Enable memory caching (est. 25% improvement)
  3. Increase agent concurrency to 8 (est. 20% improvement)

βœ… Quick Fixes Available

Run with --fix to apply:

  • Enable smart caching
  • Optimize message routing
  • Adjust agent priorities

```

2. Performance Profiling

#### Real-time Detection

Automatic analysis during task execution:

  • Execution time vs. complexity
  • Agent utilization rates
  • Resource constraints
  • Operation patterns

#### Common Bottleneck Patterns

Time Bottlenecks:

  • Tasks taking > 5 minutes
  • Sequential operations that could parallelize
  • Redundant file operations
  • Inefficient algorithm implementations

Coordination Bottlenecks:

  • Single agent for complex tasks
  • Unbalanced agent workloads
  • Poor topology selection
  • Excessive synchronization points

Resource Bottlenecks:

  • High operation count (> 100)
  • Memory constraints
  • I/O limitations
  • Thread pool saturation

#### MCP Integration

```javascript

// Check for bottlenecks in Claude Code

mcp__claude-flow__bottleneck_detect({

timeRange: "1h",

threshold: 20,

autoFix: false

})

// Get detailed task results with bottleneck analysis

mcp__claude-flow__task_results({

taskId: "task-123",

format: "detailed"

})

```

Result Format:

```json

{

"bottlenecks": [

{

"type": "coordination",

"severity": "high",

"description": "Single agent used for complex task",

"recommendation": "Spawn specialized agents for parallel work",

"impact": "35%",

"affectedComponents": ["coordinator", "coder-1"]

}

],

"improvements": [

{

"area": "execution_time",

"suggestion": "Use parallel task execution",

"expectedImprovement": "30-50% time reduction",

"implementationSteps": [

"Split task into smaller units",

"Spawn 3-4 specialized agents",

"Use mesh topology for coordination"

]

}

],

"metrics": {

"avgExecutionTime": "142s",

"agentUtilization": "67%",

"cacheHitRate": "82%",

"parallelizationFactor": 1.2

}

}

```

3. Report Generation

#### Command Syntax

```bash

npx claude-flow analysis performance-report [options]

```

#### Options

  • --format - Report format: json, html, markdown (default: markdown)
  • --include-metrics - Include detailed metrics and charts
  • --compare - Compare with previous swarm
  • --time-range - Analysis period: 1h, 24h, 7d, 30d, all
  • --output - Output file path
  • --sections - Comma-separated sections to include

#### Report Sections

  1. Executive Summary

- Overall performance score

- Key metrics overview

- Critical findings

  1. Swarm Overview

- Topology configuration

- Agent distribution

- Task statistics

  1. Performance Metrics

- Execution times

- Throughput analysis

- Resource utilization

- Latency breakdown

  1. Bottleneck Analysis

- Identified bottlenecks

- Impact assessment

- Optimization priorities

  1. Comparative Analysis (when --compare used)

- Performance trends

- Improvement metrics

- Regression detection

  1. Recommendations

- Prioritized action items

- Expected improvements

- Implementation guidance

#### Usage Examples

```bash

# Generate HTML report with all metrics

npx claude-flow analysis performance-report --format html --include-metrics

# Compare current swarm with previous

npx claude-flow analysis performance-report --compare swarm-123 --format markdown

# Custom output with specific sections

npx claude-flow analysis performance-report \

--sections summary,metrics,recommendations \

--output reports/perf-analysis.html \

--format html

# Weekly performance report

npx claude-flow analysis performance-report \

--time-range 7d \

--include-metrics \

--format markdown \

--output docs/weekly-performance.md

# JSON format for CI/CD integration

npx claude-flow analysis performance-report \

--format json \

--output build/performance.json

```

#### Sample Markdown Report

```markdown

# Performance Analysis Report

Executive Summary

  • Overall Score: 87/100
  • Analysis Period: Last 24 hours
  • Swarms Analyzed: 3
  • Critical Issues: 1

Key Metrics

| Metric | Value | Trend | Target |

|--------|-------|-------|--------|

| Avg Task Time | 42s | ↓ 12% | 35s |

| Agent Utilization | 78% | ↑ 5% | 85% |

| Cache Hit Rate | 91% | β†’ | 90% |

| Parallel Efficiency | 2.3x | ↑ 0.4x | 2.5x |

Bottleneck Analysis

Critical

  1. Agent Communication Delay (Impact: 35%)

- Coordinator β†’ Coder messages delayed by 2.3s avg

- Fix: Switch to hierarchical topology

Warnings

  1. Memory Access Pattern (Impact: 18%)

- Neural pattern loading: 1.8s per access

- Fix: Enable memory caching

Recommendations

  1. High Priority: Switch to hierarchical topology (40% improvement)
  2. Medium Priority: Enable memory caching (25% improvement)
  3. Low Priority: Increase agent concurrency to 8 (20% improvement)

```

4. Optimization Recommendations

#### Automatic Fixes

When using --fix, the following optimizations may be applied:

1. Topology Optimization

  • Switch to more efficient topology (mesh β†’ hierarchical)
  • Adjust communication patterns
  • Reduce coordination overhead
  • Optimize message routing

2. Caching Enhancement

  • Enable memory caching
  • Optimize cache strategies
  • Preload common patterns
  • Implement cache warming

3. Concurrency Tuning

  • Adjust agent counts
  • Optimize parallel execution
  • Balance workload distribution
  • Implement load balancing

4. Priority Adjustment

  • Reorder task queues
  • Prioritize critical paths
  • Reduce wait times
  • Implement fair scheduling

5. Resource Optimization

  • Optimize memory usage
  • Reduce I/O operations
  • Batch API calls
  • Implement connection pooling

#### Performance Impact

Typical improvements after bottleneck resolution:

  • Communication: 30-50% faster message delivery
  • Processing: 20-40% reduced task completion time
  • Memory: 40-60% fewer cache misses
  • Network: 25-45% reduced API latency
  • Overall: 25-45% total performance improvement

Advanced Usage

Continuous Monitoring

```bash

# Monitor performance in real-time

npx claude-flow swarm monitor --interval 5

# Generate hourly reports

while true; do

npx claude-flow analysis performance-report \

--format json \

--output logs/perf-$(date +%Y%m%d-%H%M).json

sleep 3600

done

```

CI/CD Integration

```yaml

# .github/workflows/performance.yml

name: Performance Analysis

on: [push, pull_request]

jobs:

analyze:

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v2

- name: Run Performance Analysis

run: |

npx claude-flow analysis performance-report \

--format json \

--output performance.json

- name: Check Performance Thresholds

run: |

npx claude-flow bottleneck detect \

--threshold 15 \

--export bottlenecks.json

- name: Upload Reports

uses: actions/upload-artifact@v2

with:

name: performance-reports

path: |

performance.json

bottlenecks.json

```

Custom Analysis Scripts

```javascript

// scripts/analyze-performance.js

const { exec } = require('child_process');

const fs = require('fs');

async function analyzePerformance() {

// Run bottleneck detection

const bottlenecks = await runCommand(

'npx claude-flow bottleneck detect --format json'

);

// Generate performance report

const report = await runCommand(

'npx claude-flow analysis performance-report --format json'

);

// Analyze results

const analysis = {

bottlenecks: JSON.parse(bottlenecks),

performance: JSON.parse(report),

timestamp: new Date().toISOString()

};

// Save combined analysis

fs.writeFileSync(

'analysis/combined-report.json',

JSON.stringify(analysis, null, 2)

);

// Generate alerts if needed

if (analysis.bottlenecks.critical.length > 0) {

console.error('CRITICAL: Performance bottlenecks detected!');

process.exit(1);

}

}

function runCommand(cmd) {

return new Promise((resolve, reject) => {

exec(cmd, (error, stdout, stderr) => {

if (error) reject(error);

else resolve(stdout);

});

});

}

analyzePerformance().catch(console.error);

```

Best Practices

1. Regular Analysis

  • Run bottleneck detection after major changes
  • Generate weekly performance reports
  • Monitor trends over time
  • Set up automated alerts

2. Threshold Tuning

  • Start with default threshold (20%)
  • Lower for production systems (10-15%)
  • Higher for development (25-30%)
  • Adjust based on requirements

3. Fix Strategy

  • Always review before applying --fix
  • Test fixes in development first
  • Apply fixes incrementally
  • Monitor impact after changes

4. Report Integration

  • Include in documentation
  • Share with team regularly
  • Track improvements over time
  • Use for capacity planning

5. Continuous Optimization

  • Learn from each analysis
  • Build performance budgets
  • Establish baselines
  • Set improvement goals

Troubleshooting

Common Issues

High Memory Usage

```bash

# Analyze memory bottlenecks

npx claude-flow bottleneck detect --threshold 10

# Check cache performance

npx claude-flow cache manage --action stats

# Review memory metrics

npx claude-flow memory usage

```

Slow Task Execution

```bash

# Identify slow tasks

npx claude-flow task status --detailed

# Analyze coordination overhead

npx claude-flow bottleneck detect --time-range 1h

# Check agent utilization

npx claude-flow agent metrics

```

Poor Cache Performance

```bash

# Analyze cache hit rates

npx claude-flow analysis performance-report --sections metrics

# Review cache strategy

npx claude-flow cache manage --action analyze

# Enable cache warming

npx claude-flow bottleneck detect --fix

```

Integration with Other Skills

  • swarm-orchestration: Use performance data to optimize topology
  • memory-management: Improve cache strategies based on analysis
  • task-coordination: Adjust scheduling based on bottlenecks
  • neural-training: Train patterns from performance data

Related Commands

  • npx claude-flow swarm monitor - Real-time monitoring
  • npx claude-flow token usage - Token optimization analysis
  • npx claude-flow cache manage - Cache optimization
  • npx claude-flow agent metrics - Agent performance metrics
  • npx claude-flow task status - Task execution analysis

See Also

  • [Bottleneck Detection Guide](/workspaces/claude-code-flow/.claude/commands/analysis/bottleneck-detect.md)
  • [Performance Report Guide](/workspaces/claude-code-flow/.claude/commands/analysis/performance-report.md)
  • [Performance Bottlenecks Overview](/workspaces/claude-code-flow/.claude/commands/analysis/performance-bottlenecks.md)
  • [Swarm Monitoring Documentation](../swarm-orchestration/SKILL.md)
  • [Memory Management Documentation](../memory-management/SKILL.md)

---

Version: 1.0.0

Last Updated: 2025-10-19

Maintainer: Claude Flow Team

More from this repository10

πŸͺ
ruvnet-claude-flowπŸͺMarketplace

Enables developers to discover, share, and integrate specialized Claude AI plugins and agents from a community-driven marketplace.

🎯
flow-nexus-platform🎯Skill

Manages Flow Nexus platform capabilities, enabling developers to authenticate, deploy apps, manage credits, execute sandboxes, and participate in coding challenges.

🎯
v3 mcp optimization🎯Skill

Optimizes multi-control point (MCP) configurations for enterprise AI workflows, enhancing agent coordination and performance efficiency.

🎯
agentdb memory patterns🎯Skill

Manages and optimizes memory storage, retrieval, and pattern recognition for AI agents using a structured database approach.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates multiple Claude AI agents into coordinated, self-learning swarms for enterprise-grade multi-agent AI development and deployment.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling enterprise-level multi-agent AI workflows with self-learning and consensus capabilities.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling enterprise-level multi-agent AI workflows with self-learning and consensus capabilities.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates multiple Claude AI agents into coordinated, self-learning swarms for enterprise-level AI development and task execution.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling complex, collaborative problem-solving with enterprise-grade deployment and management capabilities.

🎯
flow-nexus-neural🎯Skill

Enables distributed neural network training and deployment across E2B sandboxes with flexible architectures and scalable computational tiers.