🎯

swarm-advanced

🎯Skill

from ruvnet/claude-flow

VibeIndex|
What it does

Orchestrates advanced distributed workflows using dynamic swarm topologies, enabling parallel research, development, and testing across specialized agents.

swarm-advanced

Installation

Install skill:
npx skills add https://github.com/ruvnet/claude-flow --skill swarm-advanced
15
Last UpdatedJan 26, 2026

Skill Details

SKILL.md

Advanced swarm orchestration patterns for research, development, testing, and complex distributed workflows

Overview

# Advanced Swarm Orchestration

Master advanced swarm patterns for distributed research, development, and testing workflows. This skill covers comprehensive orchestration strategies using both MCP tools and CLI commands.

Quick Start

Prerequisites

```bash

# Ensure Claude Flow is installed

npm install -g claude-flow@alpha

# Add MCP server (if using MCP tools)

claude mcp add claude-flow npx claude-flow@alpha mcp start

```

Basic Pattern

```javascript

// 1. Initialize swarm topology

mcp__claude-flow__swarm_init({ topology: "mesh", maxAgents: 6 })

// 2. Spawn specialized agents

mcp__claude-flow__agent_spawn({ type: "researcher", name: "Agent 1" })

// 3. Orchestrate tasks

mcp__claude-flow__task_orchestrate({ task: "...", strategy: "parallel" })

```

Core Concepts

Swarm Topologies

Mesh Topology - Peer-to-peer communication, best for research and analysis

  • All agents communicate directly
  • High flexibility and resilience
  • Use for: Research, analysis, brainstorming

Hierarchical Topology - Coordinator with subordinates, best for development

  • Clear command structure
  • Sequential workflow support
  • Use for: Development, structured workflows

Star Topology - Central coordinator, best for testing

  • Centralized control and monitoring
  • Parallel execution with coordination
  • Use for: Testing, validation, quality assurance

Ring Topology - Sequential processing chain

  • Step-by-step processing
  • Pipeline workflows
  • Use for: Multi-stage processing, data pipelines

Agent Strategies

Adaptive - Dynamic adjustment based on task complexity

Balanced - Equal distribution of work across agents

Specialized - Task-specific agent assignment

Parallel - Maximum concurrent execution

Pattern 1: Research Swarm

Purpose

Deep research through parallel information gathering, analysis, and synthesis.

Architecture

```javascript

// Initialize research swarm

mcp__claude-flow__swarm_init({

"topology": "mesh",

"maxAgents": 6,

"strategy": "adaptive"

})

// Spawn research team

const researchAgents = [

{

type: "researcher",

name: "Web Researcher",

capabilities: ["web-search", "content-extraction", "source-validation"]

},

{

type: "researcher",

name: "Academic Researcher",

capabilities: ["paper-analysis", "citation-tracking", "literature-review"]

},

{

type: "analyst",

name: "Data Analyst",

capabilities: ["data-processing", "statistical-analysis", "visualization"]

},

{

type: "analyst",

name: "Pattern Analyzer",

capabilities: ["trend-detection", "correlation-analysis", "outlier-detection"]

},

{

type: "documenter",

name: "Report Writer",

capabilities: ["synthesis", "technical-writing", "formatting"]

}

]

// Spawn all agents

researchAgents.forEach(agent => {

mcp__claude-flow__agent_spawn({

type: agent.type,

name: agent.name,

capabilities: agent.capabilities

})

})

```

Research Workflow

#### Phase 1: Information Gathering

```javascript

// Parallel information collection

mcp__claude-flow__parallel_execute({

"tasks": [

{

"id": "web-search",

"command": "search recent publications and articles"

},

{

"id": "academic-search",

"command": "search academic databases and papers"

},

{

"id": "data-collection",

"command": "gather relevant datasets and statistics"

},

{

"id": "expert-search",

"command": "identify domain experts and thought leaders"

}

]

})

// Store research findings in memory

mcp__claude-flow__memory_usage({

"action": "store",

"key": "research-findings-" + Date.now(),

"value": JSON.stringify(findings),

"namespace": "research",

"ttl": 604800 // 7 days

})

```

#### Phase 2: Analysis and Validation

```javascript

// Pattern recognition in findings

mcp__claude-flow__pattern_recognize({

"data": researchData,

"patterns": ["trend", "correlation", "outlier", "emerging-pattern"]

})

// Cognitive analysis

mcp__claude-flow__cognitive_analyze({

"behavior": "research-synthesis"

})

// Quality assessment

mcp__claude-flow__quality_assess({

"target": "research-sources",

"criteria": ["credibility", "relevance", "recency", "authority"]

})

// Cross-reference validation

mcp__claude-flow__neural_patterns({

"action": "analyze",

"operation": "fact-checking",

"metadata": { "sources": sourcesArray }

})

```

#### Phase 3: Knowledge Management

```javascript

// Search existing knowledge base

mcp__claude-flow__memory_search({

"pattern": "topic X",

"namespace": "research",

"limit": 20

})

// Create knowledge graph connections

mcp__claude-flow__neural_patterns({

"action": "learn",

"operation": "knowledge-graph",

"metadata": {

"topic": "X",

"connections": relatedTopics,

"depth": 3

}

})

// Store connections for future use

mcp__claude-flow__memory_usage({

"action": "store",

"key": "knowledge-graph-X",

"value": JSON.stringify(knowledgeGraph),

"namespace": "research/graphs",

"ttl": 2592000 // 30 days

})

```

#### Phase 4: Report Generation

```javascript

// Orchestrate report generation

mcp__claude-flow__task_orchestrate({

"task": "generate comprehensive research report",

"strategy": "sequential",

"priority": "high",

"dependencies": ["gather", "analyze", "validate", "synthesize"]

})

// Monitor research progress

mcp__claude-flow__swarm_status({

"swarmId": "research-swarm"

})

// Generate final report

mcp__claude-flow__workflow_execute({

"workflowId": "research-report-generation",

"params": {

"findings": findings,

"format": "comprehensive",

"sections": ["executive-summary", "methodology", "findings", "analysis", "conclusions", "references"]

}

})

```

CLI Fallback

```bash

# Quick research swarm

npx claude-flow swarm "research AI trends in 2025" \

--strategy research \

--mode distributed \

--max-agents 6 \

--parallel \

--output research-report.md

```

Pattern 2: Development Swarm

Purpose

Full-stack development through coordinated specialist agents.

Architecture

```javascript

// Initialize development swarm with hierarchy

mcp__claude-flow__swarm_init({

"topology": "hierarchical",

"maxAgents": 8,

"strategy": "balanced"

})

// Spawn development team

const devTeam = [

{ type: "architect", name: "System Architect", role: "coordinator" },

{ type: "coder", name: "Backend Developer", capabilities: ["node", "api", "database"] },

{ type: "coder", name: "Frontend Developer", capabilities: ["react", "ui", "ux"] },

{ type: "coder", name: "Database Engineer", capabilities: ["sql", "nosql", "optimization"] },

{ type: "tester", name: "QA Engineer", capabilities: ["unit", "integration", "e2e"] },

{ type: "reviewer", name: "Code Reviewer", capabilities: ["security", "performance", "best-practices"] },

{ type: "documenter", name: "Technical Writer", capabilities: ["api-docs", "guides", "tutorials"] },

{ type: "monitor", name: "DevOps Engineer", capabilities: ["ci-cd", "deployment", "monitoring"] }

]

// Spawn all team members

devTeam.forEach(member => {

mcp__claude-flow__agent_spawn({

type: member.type,

name: member.name,

capabilities: member.capabilities,

swarmId: "dev-swarm"

})

})

```

Development Workflow

#### Phase 1: Architecture and Design

```javascript

// System architecture design

mcp__claude-flow__task_orchestrate({

"task": "design system architecture for REST API",

"strategy": "sequential",

"priority": "critical",

"assignTo": "System Architect"

})

// Store architecture decisions

mcp__claude-flow__memory_usage({

"action": "store",

"key": "architecture-decisions",

"value": JSON.stringify(architectureDoc),

"namespace": "development/design"

})

```

#### Phase 2: Parallel Implementation

```javascript

// Parallel development tasks

mcp__claude-flow__parallel_execute({

"tasks": [

{

"id": "backend-api",

"command": "implement REST API endpoints",

"assignTo": "Backend Developer"

},

{

"id": "frontend-ui",

"command": "build user interface components",

"assignTo": "Frontend Developer"

},

{

"id": "database-schema",

"command": "design and implement database schema",

"assignTo": "Database Engineer"

},

{

"id": "api-documentation",

"command": "create API documentation",

"assignTo": "Technical Writer"

}

]

})

// Monitor development progress

mcp__claude-flow__swarm_monitor({

"swarmId": "dev-swarm",

"interval": 5000

})

```

#### Phase 3: Testing and Validation

```javascript

// Comprehensive testing

mcp__claude-flow__batch_process({

"items": [

{ type: "unit", target: "all-modules" },

{ type: "integration", target: "api-endpoints" },

{ type: "e2e", target: "user-flows" },

{ type: "performance", target: "critical-paths" }

],

"operation": "execute-tests"

})

// Quality assessment

mcp__claude-flow__quality_assess({

"target": "codebase",

"criteria": ["coverage", "complexity", "maintainability", "security"]

})

```

#### Phase 4: Review and Deployment

```javascript

// Code review workflow

mcp__claude-flow__workflow_execute({

"workflowId": "code-review-process",

"params": {

"reviewers": ["Code Reviewer"],

"criteria": ["security", "performance", "best-practices"]

}

})

// CI/CD pipeline

mcp__claude-flow__pipeline_create({

"config": {

"stages": ["build", "test", "security-scan", "deploy"],

"environment": "production"

}

})

```

CLI Fallback

```bash

# Quick development swarm

npx claude-flow swarm "build REST API with authentication" \

--strategy development \

--mode hierarchical \

--monitor \

--output sqlite

```

Pattern 3: Testing Swarm

Purpose

Comprehensive quality assurance through distributed testing.

Architecture

```javascript

// Initialize testing swarm with star topology

mcp__claude-flow__swarm_init({

"topology": "star",

"maxAgents": 7,

"strategy": "parallel"

})

// Spawn testing team

const testingTeam = [

{

type: "tester",

name: "Unit Test Coordinator",

capabilities: ["unit-testing", "mocking", "coverage", "tdd"]

},

{

type: "tester",

name: "Integration Tester",

capabilities: ["integration", "api-testing", "contract-testing"]

},

{

type: "tester",

name: "E2E Tester",

capabilities: ["e2e", "ui-testing", "user-flows", "selenium"]

},

{

type: "tester",

name: "Performance Tester",

capabilities: ["load-testing", "stress-testing", "benchmarking"]

},

{

type: "monitor",

name: "Security Tester",

capabilities: ["security-testing", "penetration-testing", "vulnerability-scanning"]

},

{

type: "analyst",

name: "Test Analyst",

capabilities: ["coverage-analysis", "test-optimization", "reporting"]

},

{

type: "documenter",

name: "Test Documenter",

capabilities: ["test-documentation", "test-plans", "reports"]

}

]

// Spawn all testers

testingTeam.forEach(tester => {

mcp__claude-flow__agent_spawn({

type: tester.type,

name: tester.name,

capabilities: tester.capabilities,

swarmId: "testing-swarm"

})

})

```

Testing Workflow

#### Phase 1: Test Planning

```javascript

// Analyze test coverage requirements

mcp__claude-flow__quality_assess({

"target": "test-coverage",

"criteria": [

"line-coverage",

"branch-coverage",

"function-coverage",

"edge-cases"

]

})

// Identify test scenarios

mcp__claude-flow__pattern_recognize({

"data": testScenarios,

"patterns": [

"edge-case",

"boundary-condition",

"error-path",

"happy-path"

]

})

// Store test plan

mcp__claude-flow__memory_usage({

"action": "store",

"key": "test-plan-" + Date.now(),

"value": JSON.stringify(testPlan),

"namespace": "testing/plans"

})

```

#### Phase 2: Parallel Test Execution

```javascript

// Execute all test suites in parallel

mcp__claude-flow__parallel_execute({

"tasks": [

{

"id": "unit-tests",

"command": "npm run test:unit",

"assignTo": "Unit Test Coordinator"

},

{

"id": "integration-tests",

"command": "npm run test:integration",

"assignTo": "Integration Tester"

},

{

"id": "e2e-tests",

"command": "npm run test:e2e",

"assignTo": "E2E Tester"

},

{

"id": "performance-tests",

"command": "npm run test:performance",

"assignTo": "Performance Tester"

},

{

"id": "security-tests",

"command": "npm run test:security",

"assignTo": "Security Tester"

}

]

})

// Batch process test suites

mcp__claude-flow__batch_process({

"items": testSuites,

"operation": "execute-test-suite"

})

```

#### Phase 3: Performance and Security

```javascript

// Run performance benchmarks

mcp__claude-flow__benchmark_run({

"suite": "comprehensive-performance"

})

// Bottleneck analysis

mcp__claude-flow__bottleneck_analyze({

"component": "application",

"metrics": ["response-time", "throughput", "memory", "cpu"]

})

// Security scanning

mcp__claude-flow__security_scan({

"target": "application",

"depth": "comprehensive"

})

// Vulnerability analysis

mcp__claude-flow__error_analysis({

"logs": securityScanLogs

})

```

#### Phase 4: Monitoring and Reporting

```javascript

// Real-time test monitoring

mcp__claude-flow__swarm_monitor({

"swarmId": "testing-swarm",

"interval": 2000

})

// Generate comprehensive test report

mcp__claude-flow__performance_report({

"format": "detailed",

"timeframe": "current-run"

})

// Get test results

mcp__claude-flow__task_results({

"taskId": "test-execution-001"

})

// Trend analysis

mcp__claude-flow__trend_analysis({

"metric": "test-coverage",

"period": "30d"

})

```

CLI Fallback

```bash

# Quick testing swarm

npx claude-flow swarm "test application comprehensively" \

--strategy testing \

--mode star \

--parallel \

--timeout 600

```

Pattern 4: Analysis Swarm

Purpose

Deep code and system analysis through specialized analyzers.

Architecture

```javascript

// Initialize analysis swarm

mcp__claude-flow__swarm_init({

"topology": "mesh",

"maxAgents": 5,

"strategy": "adaptive"

})

// Spawn analysis specialists

const analysisTeam = [

{

type: "analyst",

name: "Code Analyzer",

capabilities: ["static-analysis", "complexity-analysis", "dead-code-detection"]

},

{

type: "analyst",

name: "Security Analyzer",

capabilities: ["security-scan", "vulnerability-detection", "dependency-audit"]

},

{

type: "analyst",

name: "Performance Analyzer",

capabilities: ["profiling", "bottleneck-detection", "optimization"]

},

{

type: "analyst",

name: "Architecture Analyzer",

capabilities: ["dependency-analysis", "coupling-detection", "modularity-assessment"]

},

{

type: "documenter",

name: "Analysis Reporter",

capabilities: ["reporting", "visualization", "recommendations"]

}

]

// Spawn all analysts

analysisTeam.forEach(analyst => {

mcp__claude-flow__agent_spawn({

type: analyst.type,

name: analyst.name,

capabilities: analyst.capabilities

})

})

```

Analysis Workflow

```javascript

// Parallel analysis execution

mcp__claude-flow__parallel_execute({

"tasks": [

{ "id": "analyze-code", "command": "analyze codebase structure and quality" },

{ "id": "analyze-security", "command": "scan for security vulnerabilities" },

{ "id": "analyze-performance", "command": "identify performance bottlenecks" },

{ "id": "analyze-architecture", "command": "assess architectural patterns" }

]

})

// Generate comprehensive analysis report

mcp__claude-flow__performance_report({

"format": "detailed",

"timeframe": "current"

})

// Cost analysis

mcp__claude-flow__cost_analysis({

"timeframe": "30d"

})

```

Advanced Techniques

Error Handling and Fault Tolerance

```javascript

// Setup fault tolerance for all agents

mcp__claude-flow__daa_fault_tolerance({

"agentId": "all",

"strategy": "auto-recovery"

})

// Error handling pattern

try {

await mcp__claude-flow__task_orchestrate({

"task": "complex operation",

"strategy": "parallel",

"priority": "high"

})

} catch (error) {

// Check swarm health

const status = await mcp__claude-flow__swarm_status({})

// Analyze error patterns

await mcp__claude-flow__error_analysis({

"logs": [error.message]

})

// Auto-recovery attempt

if (status.healthy) {

await mcp__claude-flow__task_orchestrate({

"task": "retry failed operation",

"strategy": "sequential"

})

}

}

```

Memory and State Management

```javascript

// Cross-session persistence

mcp__claude-flow__memory_persist({

"sessionId": "swarm-session-001"

})

// Namespace management for different swarms

mcp__claude-flow__memory_namespace({

"namespace": "research-swarm",

"action": "create"

})

// Create state snapshot

mcp__claude-flow__state_snapshot({

"name": "development-checkpoint-1"

})

// Restore from snapshot if needed

mcp__claude-flow__context_restore({

"snapshotId": "development-checkpoint-1"

})

// Backup memory stores

mcp__claude-flow__memory_backup({

"path": "/workspaces/claude-code-flow/backups/swarm-memory.json"

})

```

Neural Pattern Learning

```javascript

// Train neural patterns from successful workflows

mcp__claude-flow__neural_train({

"pattern_type": "coordination",

"training_data": JSON.stringify(successfulWorkflows),

"epochs": 50

})

// Adaptive learning from experience

mcp__claude-flow__learning_adapt({

"experience": {

"workflow": "research-to-report",

"success": true,

"duration": 3600,

"quality": 0.95

}

})

// Pattern recognition for optimization

mcp__claude-flow__pattern_recognize({

"data": workflowMetrics,

"patterns": ["bottleneck", "optimization-opportunity", "efficiency-gain"]

})

```

Workflow Automation

```javascript

// Create reusable workflow

mcp__claude-flow__workflow_create({

"name": "full-stack-development",

"steps": [

{ "phase": "design", "agents": ["architect"] },

{ "phase": "implement", "agents": ["backend-dev", "frontend-dev"], "parallel": true },

{ "phase": "test", "agents": ["tester", "security-tester"], "parallel": true },

{ "phase": "review", "agents": ["reviewer"] },

{ "phase": "deploy", "agents": ["devops"] }

],

"triggers": ["on-commit", "scheduled-daily"]

})

// Setup automation rules

mcp__claude-flow__automation_setup({

"rules": [

{

"trigger": "file-changed",

"pattern": "*.js",

"action": "run-tests"

},

{

"trigger": "PR-created",

"action": "code-review-swarm"

}

]

})

// Event-driven triggers

mcp__claude-flow__trigger_setup({

"events": ["code-commit", "PR-merge", "deployment"],

"actions": ["test", "analyze", "document"]

})

```

Performance Optimization

```javascript

// Topology optimization

mcp__claude-flow__topology_optimize({

"swarmId": "current-swarm"

})

// Load balancing

mcp__claude-flow__load_balance({

"swarmId": "development-swarm",

"tasks": taskQueue

})

// Agent coordination sync

mcp__claude-flow__coordination_sync({

"swarmId": "development-swarm"

})

// Auto-scaling

mcp__claude-flow__swarm_scale({

"swarmId": "development-swarm",

"targetSize": 12

})

```

Monitoring and Metrics

```javascript

// Real-time swarm monitoring

mcp__claude-flow__swarm_monitor({

"swarmId": "active-swarm",

"interval": 3000

})

// Collect comprehensive metrics

mcp__claude-flow__metrics_collect({

"components": ["agents", "tasks", "memory", "performance"]

})

// Health monitoring

mcp__claude-flow__health_check({

"components": ["swarm", "agents", "neural", "memory"]

})

// Usage statistics

mcp__claude-flow__usage_stats({

"component": "swarm-orchestration"

})

// Trend analysis

mcp__claude-flow__trend_analysis({

"metric": "agent-performance",

"period": "7d"

})

```

Best Practices

1. Choosing the Right Topology

  • Mesh: Research, brainstorming, collaborative analysis
  • Hierarchical: Structured development, sequential workflows
  • Star: Testing, validation, centralized coordination
  • Ring: Pipeline processing, staged workflows

2. Agent Specialization

  • Assign specific capabilities to each agent
  • Avoid overlapping responsibilities
  • Use coordination agents for complex workflows
  • Leverage memory for agent communication

3. Parallel Execution

  • Identify independent tasks for parallelization
  • Use sequential execution for dependent tasks
  • Monitor resource usage during parallel execution
  • Implement proper error handling

4. Memory Management

  • Use namespaces to organize memory
  • Set appropriate TTL values
  • Create regular backups
  • Implement state snapshots for checkpoints

5. Monitoring and Optimization

  • Monitor swarm health regularly
  • Collect and analyze metrics
  • Optimize topology based on performance
  • Use neural patterns to learn from success

6. Error Recovery

  • Implement fault tolerance strategies
  • Use auto-recovery mechanisms
  • Analyze error patterns
  • Create fallback workflows

Real-World Examples

Example 1: AI Research Project

```javascript

// Research AI trends, analyze findings, generate report

mcp__claude-flow__swarm_init({ topology: "mesh", maxAgents: 6 })

// Spawn: 2 researchers, 2 analysts, 1 synthesizer, 1 documenter

// Parallel gather β†’ Analyze patterns β†’ Synthesize β†’ Report

```

Example 2: Full-Stack Application

```javascript

// Build complete web application with testing

mcp__claude-flow__swarm_init({ topology: "hierarchical", maxAgents: 8 })

// Spawn: 1 architect, 2 devs, 1 db engineer, 2 testers, 1 reviewer, 1 devops

// Design β†’ Parallel implement β†’ Test β†’ Review β†’ Deploy

```

Example 3: Security Audit

```javascript

// Comprehensive security analysis

mcp__claude-flow__swarm_init({ topology: "star", maxAgents: 5 })

// Spawn: 1 coordinator, 1 code analyzer, 1 security scanner, 1 penetration tester, 1 reporter

// Parallel scan β†’ Vulnerability analysis β†’ Penetration test β†’ Report

```

Example 4: Performance Optimization

```javascript

// Identify and fix performance bottlenecks

mcp__claude-flow__swarm_init({ topology: "mesh", maxAgents: 4 })

// Spawn: 1 profiler, 1 bottleneck analyzer, 1 optimizer, 1 tester

// Profile β†’ Identify bottlenecks β†’ Optimize β†’ Validate

```

Troubleshooting

Common Issues

Issue: Swarm agents not coordinating properly

Solution: Check topology selection, verify memory usage, enable monitoring

Issue: Parallel execution failing

Solution: Verify task dependencies, check resource limits, implement error handling

Issue: Memory persistence not working

Solution: Verify namespaces, check TTL settings, ensure backup configuration

Issue: Performance degradation

Solution: Optimize topology, reduce agent count, analyze bottlenecks

Related Skills

  • sparc-methodology - Systematic development workflow
  • github-integration - Repository management and automation
  • neural-patterns - AI-powered coordination optimization
  • memory-management - Cross-session state persistence

References

  • [Claude Flow Documentation](https://github.com/ruvnet/claude-flow)
  • [Swarm Orchestration Guide](https://github.com/ruvnet/claude-flow/wiki/swarm)
  • [MCP Tools Reference](https://github.com/ruvnet/claude-flow/wiki/mcp)
  • [Performance Optimization](https://github.com/ruvnet/claude-flow/wiki/performance)

---

Version: 2.0.0

Last Updated: 2025-10-19

Skill Level: Advanced

Estimated Learning Time: 2-3 hours

More from this repository10

πŸͺ
ruvnet-claude-flowπŸͺMarketplace

Enables developers to discover, share, and integrate specialized Claude AI plugins and agents from a community-driven marketplace.

🎯
flow-nexus-platform🎯Skill

Manages Flow Nexus platform capabilities, enabling developers to authenticate, deploy apps, manage credits, execute sandboxes, and participate in coding challenges.

🎯
v3 mcp optimization🎯Skill

Optimizes multi-control point (MCP) configurations for enterprise AI workflows, enhancing agent coordination and performance efficiency.

🎯
agentdb memory patterns🎯Skill

Manages and optimizes memory storage, retrieval, and pattern recognition for AI agents using a structured database approach.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates multiple Claude AI agents into coordinated, self-learning swarms for enterprise-grade multi-agent AI development and deployment.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling enterprise-level multi-agent AI workflows with self-learning and consensus capabilities.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling enterprise-level multi-agent AI workflows with self-learning and consensus capabilities.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates multiple Claude AI agents into coordinated, self-learning swarms for enterprise-level AI development and task execution.

πŸ”Œ
claude-flowπŸ”ŒPlugin

Orchestrates and coordinates multiple specialized AI agents using Claude Code, enabling complex, collaborative problem-solving with enterprise-grade deployment and management capabilities.

🎯
performance-analysis🎯Skill

Identifies and analyzes performance bottlenecks in Claude Flow swarms, generating detailed reports and providing AI-powered optimization recommendations.