🎯

eval-recipes-runner

🎯Skill

from rysweet/amplihack

VibeIndex|
What it does

eval-recipes-runner skill from rysweet/amplihack

πŸ“¦

Part of

rysweet/amplihack(81 items)

eval-recipes-runner

Installation

git cloneClone repository
git clone https://github.com/microsoft/eval-recipes.git ~/eval-recipes
uv runRun with uv
uv run eval_recipes/main.py --agent amplihack --task linkedin_drafting --trials 3
uv runRun with uv
uv run eval_recipes/main.py --agent amplihack --task linkedin_drafting
uv runRun with uv
uv run eval_recipes/main.py --agent amplihack_pr1443 --task linkedin_drafting
uv runRun with uv
uv run eval_recipes/main.py --agent amplihack --task TASK_NAME --trials 3

+ 1 more commands

πŸ“– Extracted from docs: rysweet/amplihack
13Installs
17
-
Last UpdatedJan 26, 2026

Skill Details

SKILL.md

|

Overview

# eval-recipes Runner Skill

Purpose

Run Microsoft's eval-recipes benchmarks to validate amplihack improvements against baseline agents.

When to Use

  • User asks to "test with eval-recipes"
  • User says "run the evals" or "benchmark this change"
  • User wants to validate improvements against codex/claude_code
  • Testing a PR branch to prove it improves scores

Capabilities

I can run eval-recipes benchmarks to:

  1. Test specific amplihack branches
  2. Compare against baseline agents (codex, claude_code)
  3. Run specific tasks (linkedin_drafting, email_drafting, etc.)
  4. Compare before/after scores for PRs
  5. Generate reports with score improvements

How It Works

Setup (One-Time)

```bash

# Clone eval-recipes from Microsoft

git clone https://github.com/microsoft/eval-recipes.git ~/eval-recipes

cd ~/eval-recipes

# Copy our agent configs

cp -r $(pwd)/.claude/agents/eval-recipes/* data/agents/

# Install dependencies

uv sync

```

Running Benchmarks

Test a specific branch:

```bash

# Update install.dockerfile to use specific branch

# Then run benchmark

cd ~/eval-recipes

uv run eval_recipes/main.py --agent amplihack --task linkedin_drafting --trials 3

```

Compare before/after:

```bash

# Test baseline (main)

uv run eval_recipes/main.py --agent amplihack --task linkedin_drafting

# Test PR branch (edit install.dockerfile to checkout PR branch)

uv run eval_recipes/main.py --agent amplihack_pr1443 --task linkedin_drafting

# Compare scores

```

Available Tasks

Common tasks from eval-recipes:

  • linkedin_drafting - Create tool for LinkedIn posts (scored 6.5/100 before PR #1443)
  • email_drafting - Create CLI tool for emails (scored 26/100 before)
  • arxiv_paper_summarizer - Research tool
  • github_docs_extractor - Documentation tool
  • Many more in ~/eval-recipes/data/tasks/

Typical Workflow

When user says "test this change with eval-recipes":

  1. Identify the branch/PR to test
  2. Update agent config to use that branch:

```dockerfile

# In .claude/agents/eval-recipes/amplihack/install.dockerfile

RUN git clone https://github.com/rysweet/...git /tmp/amplihack && \

cd /tmp/amplihack && \

git checkout BRANCH_NAME && \

pip install -e .

```

  1. Copy to eval-recipes:

```bash

cp -r .claude/agents/eval-recipes/* ~/eval-recipes/data/agents/

```

  1. Run benchmark:

```bash

cd ~/eval-recipes

uv run eval_recipes/main.py --agent amplihack --task TASK_NAME --trials 3

```

  1. Report scores and compare with baseline

Expected Scores

Baseline (main branch):

  • Overall: 40.6/100
  • LinkedIn: 6.5/100
  • Email: 26/100

With PR #1443 (task classification):

  • Expected: 55-60/100 (+15-20 points)
  • LinkedIn: 30-40/100 (creates actual tool)
  • Email: 45/100 (consistent execution)

Example Usage

User says: "Test PR #1443 with eval-recipes on the LinkedIn task"

I do:

  1. Update install.dockerfile to checkout feat/issue-1435-task-classification
  2. Copy to eval-recipes: cp -r .claude/agents/eval-recipes/* ~/eval-recipes/data/agents/
  3. Run: cd ~/eval-recipes && uv run eval_recipes/main.py --agent amplihack --task linkedin_drafting --trials 3
  4. Report results: "Score: 35.2/100 (up from 6.5 baseline)"

Prerequisites

  • eval-recipes cloned to ~/eval-recipes
  • API key in environment: export ANTHROPIC_API_KEY=sk-ant-...
  • Docker installed (for containerized runs)
  • uv installed: curl -LsSf https://astral.sh/uv/install.sh | sh

Notes

  • Benchmarks take 2-15 minutes per task depending on complexity
  • Multiple trials (3-5) give more reliable averages
  • Docker builds can be cached for speed
  • Results saved to .benchmark_results/ in eval-recipes repo

Automation

For fully autonomous testing:

```bash

# Test suite for a PR

tasks="linkedin_drafting email_drafting arxiv_paper_summarizer"

for task in $tasks; do

uv run eval_recipes/main.py --agent amplihack --task $task --trials 3

done

# Compare results

cat .benchmark_results//amplihack//score.txt

```