🎯

generate-mcp-server

🎯Skill

from speakeasy-api/agent-skills

VibeIndex|
What it does

Generates an MCP server from an OpenAPI spec, enabling AI assistants to directly call API operations as tools.

πŸ“¦

Part of

speakeasy-api/agent-skills(25 items)

generate-mcp-server

Installation

npxRun with npx
npx my-api-mcp mcp start --bearer-auth "YOUR_TOKEN"
Claude CLIAdd MCP server via Claude CLI
claude mcp add
npxRun with npx
npx my-api-mcp mcp start
Claude Desktop ConfigurationAdd this to your claude_desktop_config.json
{ "mcpServers": { "my-api": { "command": "npx", "args": [ ...
πŸ“– Extracted from docs: speakeasy-api/agent-skills
2Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Use when generating an MCP server from an OpenAPI spec with Speakeasy. Triggers on "generate MCP server", "MCP server", "Model Context Protocol", "AI assistant tools", "Claude tools", "speakeasy MCP", "enableMCPServer"

Overview

# generate-mcp-server

Generate a Model Context Protocol (MCP) server from an OpenAPI spec using Speakeasy. The MCP server exposes API operations as tools that AI assistants like Claude can call directly.

When to Use

  • User wants to create an MCP server from their API
  • User asks about Model Context Protocol integration
  • User wants AI assistants to interact with their API
  • User says: "generate MCP server", "create MCP server", "speakeasy MCP"
  • User asks: "How do I make my API available to Claude?"
  • User mentions: "enableMCPServer", "AI assistant tools", "Claude tools"

Inputs

| Input | Required | Description |

|-------|----------|-------------|

| OpenAPI spec | Yes | Path or URL to the OpenAPI specification |

| Package name | Yes | npm package name for the MCP server (e.g., my-api-mcp) |

| Auth method | Yes | How the API authenticates (bearer token, API key, etc.) |

| Env var prefix | No | Prefix for environment variables (e.g., MYAPI) |

| Scope strategy | No | How to map operations to scopes (default: read/write by HTTP method) |

Outputs

| Output | Description |

|--------|-------------|

| MCP server | TypeScript MCP server with one tool per API operation |

| CLI entry point | Command-line interface with stdio and SSE transports |

| Scope definitions | Scope-based access control for filtering tools |

| Docker support | Dockerfile and compose config for containerized deployment |

| Workflow config | .speakeasy/workflow.yaml configured for MCP generation |

Prerequisites

  1. Speakeasy CLI installed and authenticated:

```bash

speakeasy auth login

# Or for CI/AI agents:

export SPEAKEASY_API_KEY=""

```

  1. Node.js 20+ installed (for the generated MCP server).
  1. A valid OpenAPI spec (3.0 or 3.1). Validate first:

```bash

speakeasy lint openapi --non-interactive -s ./openapi.yaml

```

Run speakeasy auth login to authenticate interactively, or set the SPEAKEASY_API_KEY environment variable.

Command

The generation uses speakeasy run after configuring the workflow, overlays, and gen.yaml. There is no single command -- follow the step-by-step workflow below.

```bash

# After all config files are in place:

speakeasy run

```

Step-by-Step Workflow

Step 1: Create the Scopes Overlay

Create mcp-scopes-overlay.yaml in the project root. This controls which API operations become MCP tools and what scopes they require:

```yaml

# mcp-scopes-overlay.yaml

openapi: 3.1.0

overlay: 1.0.0

info:

title: Add MCP scopes

version: 0.0.0

actions:

# Enable read operations

- target: $.paths.*["get","head"]

update:

x-speakeasy-mcp:

scopes: [read]

disabled: false

# Enable write operations

- target: $.paths.*["post","put","delete","patch"]

update:

x-speakeasy-mcp:

scopes: [write]

disabled: false

# Disable specific sensitive endpoints (customize as needed)

# - target: $.paths["/admin/danger-zone"]["delete"]

# update:

# x-speakeasy-mcp:

# disabled: true

```

Step 2: Create the Workflow Configuration

Create .speakeasy/workflow.yaml:

```yaml

# .speakeasy/workflow.yaml

workflowVersion: 1.0.0

speakeasyVersion: latest

sources:

My-API:

inputs:

- location: ./openapi.yaml

overlays:

- location: mcp-scopes-overlay.yaml

output: openapi.yaml

targets:

mcp-server:

target: typescript

source: My-API

```

Replace ./openapi.yaml with the actual spec path or URL.

Step 3: Configure gen.yaml

Create .speakeasy/gen.yaml:

```yaml

# .speakeasy/gen.yaml

configVersion: 2.0.0

generation:

sdkClassName: MyApiMcp

maintainOpenAPIOrder: true

devContainers:

enabled: true

schemaPath: ./openapi.yaml

typescript:

version: 1.0.0

packageName: my-api-mcp

enableMCPServer: true

envVarPrefix: MYAPI

```

Key settings:

  • enableMCPServer: true -- this is what triggers MCP server generation
  • packageName -- the npm package name users will npx
  • envVarPrefix -- prefix for auto-generated env var names

Step 4: Generate

```bash

speakeasy run

```

For AI-friendly output:

```bash

speakeasy run --output console 2>&1 | tail -50

```

Using the Generated MCP Server

CLI Usage

```bash

# Start with stdio transport (default, for local AI assistants)

npx my-api-mcp mcp start --bearer-auth "YOUR_TOKEN"

# Start with SSE transport (for networked deployment)

npx my-api-mcp mcp start --transport sse --port 3000 --bearer-auth "YOUR_TOKEN"

# Filter by scope (only expose read operations)

npx my-api-mcp mcp start --scope read --bearer-auth "YOUR_TOKEN"

# Mount specific tools only

npx my-api-mcp mcp start --tool users-get-users --tool users-create-user --bearer-auth "YOUR_TOKEN"

```

CLI Options

| Flag | Description | Default |

|------|-------------|---------|

| --transport | Transport type: stdio or sse | stdio |

| --port | Port for SSE transport | 2718 |

| --bearer-auth | API authentication token | Required |

| --server-url | Override API base URL | From spec |

| --scope | Filter by scope (repeatable) | All scopes |

| --tool | Mount specific tools (repeatable) | All tools |

| --log-level | Logging level | info |

Claude Desktop Configuration

Add to claude_desktop_config.json:

```json

{

"mcpServers": {

"my-api": {

"command": "npx",

"args": [

"-y", "--package", "my-api-mcp",

"--",

"mcp", "start",

"--bearer-auth", ""

]

}

}

}

```

Claude Code Configuration

Add to .claude/settings.json or use claude mcp add:

```json

{

"mcpServers": {

"my-api": {

"command": "npx",

"args": [

"-y", "--package", "my-api-mcp",

"--",

"mcp", "start",

"--bearer-auth", ""

]

}

}

}

```

Docker Deployment

For production, use SSE transport with Docker:

```bash

# Build and run

docker-compose up -d

# Configure MCP client to use SSE endpoint

# "url": "http://localhost:32000/sse"

```

The generated project includes a Dockerfile and docker-compose.yaml.

Example

Full example generating an MCP server for a pet store API:

```bash

# 1. Validate the spec

speakeasy lint openapi --non-interactive -s ./petstore.yaml

# 2. Create scopes overlay

cat > mcp-scopes-overlay.yaml << 'EOF'

openapi: 3.1.0

overlay: 1.0.0

info:

title: Add MCP scopes

version: 0.0.0

actions:

- target: $.paths.*["get","head"]

update:

x-speakeasy-mcp:

scopes: [read]

disabled: false

- target: $.paths.*["post","put","delete","patch"]

update:

x-speakeasy-mcp:

scopes: [write]

disabled: false

EOF

# 3. Create workflow (assumes .speakeasy/ dir exists)

mkdir -p .speakeasy

cat > .speakeasy/workflow.yaml << 'EOF'

workflowVersion: 1.0.0

speakeasyVersion: latest

sources:

petstore:

inputs:

- location: ./petstore.yaml

overlays:

- location: mcp-scopes-overlay.yaml

output: openapi.yaml

targets:

mcp-server:

target: typescript

source: petstore

EOF

# 4. Create gen.yaml

cat > .speakeasy/gen.yaml << 'EOF'

configVersion: 2.0.0

generation:

sdkClassName: PetStoreMcp

maintainOpenAPIOrder: true

typescript:

version: 1.0.0

packageName: petstore-mcp

enableMCPServer: true

envVarPrefix: PETSTORE

EOF

# 5. Generate

speakeasy run

# 6. Test locally

npx petstore-mcp mcp start --bearer-auth "test-token"

```

Expected Output

```

Workflow completed successfully.

Generated TypeScript MCP server in ./

```

The generated project contains:

  • src/mcp-server/server.ts -- Main MCP server factory
  • src/mcp-server/tools/ -- One tool per API operation
  • src/mcp-server/mcp-server.ts -- CLI entry point
  • src/mcp-server/scopes.ts -- Scope definitions

Best Practices

  1. Use overlays for MCP config -- never edit the source OpenAPI spec directly
  2. Enhance descriptions for AI -- add documentation overlays so AI assistants understand tool purpose
  3. Filter tools at runtime -- use --scope and --tool flags to limit what is exposed
  4. Use environment variables -- never hardcode tokens in config files
  5. Start with read-only scopes -- add write scopes only when needed
  6. Create a dedicated MCP package -- keep MCP separate from your main SDK

What NOT to Do

  • Do NOT modify the source OpenAPI spec to add x-speakeasy-mcp -- use overlays instead
  • Do NOT hardcode API tokens in Claude Desktop or Claude Code config files -- use environment variables or secrets managers
  • Do NOT expose all operations without reviewing them -- disable sensitive admin endpoints
  • Do NOT skip spec validation -- invalid specs produce broken MCP servers
  • Do NOT set enableMCPServer without also creating a scopes overlay -- tools will lack scope definitions
  • Do NOT use the generated MCP server as a general SDK -- it is purpose-built for AI assistant integration

Troubleshooting

MCP server fails to start

Symptom: npx my-api-mcp mcp start errors immediately.

Cause: Missing or invalid authentication flags.

Fix:

```bash

# Ensure auth flag matches your API's auth scheme

npx my-api-mcp mcp start --bearer-auth "YOUR_TOKEN"

# Check --help for available auth flags

npx my-api-mcp mcp start --help

```

No tools appear in AI assistant

Symptom: MCP server starts but AI assistant shows no tools.

Cause: Missing x-speakeasy-mcp extensions or all operations disabled.

Fix: Verify the scopes overlay is listed in workflow.yaml under overlays: and that operations have disabled: false.

Generation fails with enableMCPServer

Symptom: speakeasy run fails when enableMCPServer: true.

Cause: Usually a spec validation issue or missing workflow config.

Fix:

```bash

# Validate spec first

speakeasy lint openapi --non-interactive -s ./openapi.yaml

# Check workflow references correct source and overlay paths

cat .speakeasy/workflow.yaml

```

Tools missing expected operations

Symptom: Some API operations are not available as MCP tools.

Cause: Operations not targeted by the scopes overlay or explicitly disabled.

Fix: Review mcp-scopes-overlay.yaml target selectors. Ensure paths and methods match your spec.