🎯

spring-ai

🎯Skill

from teachingai/agent-skills

VibeIndex|
What it does

Simplifies AI model integration in Spring applications, enabling developers to easily implement chat, prompts, and AI services with various LLMs.

📦

Part of

teachingai/agent-skills(128 items)

spring-ai

Installation

Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add https://github.com/teachingai/full-stack-skills.git
Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add teachingai/full-stack-skills
Claude CodeAdd plugin in Claude Code
/plugin marketplace remove full-stack-skills
Install PluginInstall plugin from marketplace
/plugin install development-skills@full-stack-skills
Install PluginInstall plugin from marketplace
/plugin install development-skills-utils@full-stack-skills

+ 11 more commands

📖 Extracted from docs: teachingai/agent-skills
3Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Provides comprehensive guidance for Spring AI including AI model integration, prompt templates, vector stores, and AI applications. Use when the user asks about Spring AI, needs to integrate AI models, implement RAG applications, or work with AI services in Spring.

Overview

# Spring AI 开发指南

概述

Spring AI 是 Spring 官方提供的 AI 应用开发框架,简化了与各种大语言模型(LLM)的集成,包括 OpenAI、Anthropic、Azure OpenAI 等。

核心功能

1. 项目创建

依赖

```xml

org.springframework.ai

spring-ai-openai-spring-boot-starter

```

或使用 Gradle

```gradle

dependencies {

implementation 'org.springframework.ai:spring-ai-openai-spring-boot-starter'

}

```

2. Chat Client

配置

```yaml

spring:

ai:

openai:

api-key: ${OPENAI_API_KEY}

chat:

options:

model: gpt-4

temperature: 0.7

```

使用 ChatClient

```java

@Service

public class ChatService {

private final ChatClient chatClient;

public ChatService(ChatClient chatClient) {

this.chatClient = chatClient;

}

public String chat(String message) {

return chatClient.call(message);

}

public String chatWithPrompt(String userMessage) {

Prompt prompt = new Prompt(new UserMessage(userMessage));

ChatResponse response = chatClient.call(prompt);

return response.getResult().getOutput().getContent();

}

}

```

流式响应

```java

@Service

public class ChatService {

private final StreamingChatClient streamingChatClient;

public ChatService(StreamingChatClient streamingChatClient) {

this.streamingChatClient = streamingChatClient;

}

public Flux streamChat(String message) {

return streamingChatClient.stream(message)

.map(response -> response.getResult().getOutput().getContent());

}

}

```

3. Prompt Template

定义模板

```java

@Service

public class PromptService {

private final PromptTemplate promptTemplate;

public PromptService() {

this.promptTemplate = new PromptTemplate(

"请用{style}风格回答以下问题:{question}"

);

}

public String generatePrompt(String style, String question) {

Map variables = Map.of(

"style", style,

"question", question

);

return promptTemplate.render(variables);

}

}

```

使用 ChatClient

```java

@Service

public class ChatService {

private final ChatClient chatClient;

private final PromptTemplate promptTemplate;

public ChatService(ChatClient chatClient) {

this.chatClient = chatClient;

this.promptTemplate = new PromptTemplate(

"请用{style}风格回答以下问题:{question}"

);

}

public String chatWithStyle(String style, String question) {

Prompt prompt = promptTemplate.create(Map.of(

"style", style,

"question", question

));

ChatResponse response = chatClient.call(prompt);

return response.getResult().getOutput().getContent();

}

}

```

4. Embedding

配置

```yaml

spring:

ai:

openai:

embedding:

options:

model: text-embedding-ada-002

```

使用 EmbeddingClient

```java

@Service

public class EmbeddingService {

private final EmbeddingClient embeddingClient;

public EmbeddingService(EmbeddingClient embeddingClient) {

this.embeddingClient = embeddingClient;

}

public List embed(String text) {

EmbeddingResponse response = embeddingClient.embedForResponse(

List.of(text)

);

return response.getResult().getOutput();

}

public List> embedBatch(List texts) {

EmbeddingResponse response = embeddingClient.embedForResponse(texts);

return response.getResult().getOutput();

}

}

```

5. Vector Store

配置

```yaml

spring:

ai:

vectorstore:

pgvector:

index-type: HNSW

distance-type: COSINE_DISTANCE

```

使用 VectorStore

```java

@Service

public class VectorStoreService {

private final VectorStore vectorStore;

private final EmbeddingClient embeddingClient;

public VectorStoreService(

VectorStore vectorStore,

EmbeddingClient embeddingClient

) {

this.vectorStore = vectorStore;

this.embeddingClient = embeddingClient;

}

public void addDocument(String id, String content) {

List embedding = embeddingClient.embed(content);

Document document = new Document(id, content, Map.of());

vectorStore.add(List.of(document));

}

public List searchSimilar(String query, int topK) {

List queryEmbedding = embeddingClient.embed(query);

return vectorStore.similaritySearch(

SearchRequest.query(query)

.withTopK(topK)

);

}

}

```

6. Function Calling

定义函数

```java

@Bean

public Function weatherFunction() {

return request -> {

// 调用天气 API

WeatherResponse response = weatherService.getWeather(

request.getLocation()

);

return response;

};

}

```

配置 Function Calling

```java

@Configuration

public class FunctionCallingConfig {

@Bean

public Function weatherFunction() {

return request -> {

// 实现天气查询逻辑

return new WeatherResponse(/ ... /);

};

}

}

```

使用 Function Calling

```java

@Service

public class ChatService {

private final ChatClient chatClient;

private final FunctionCallbackRegistry functionCallbackRegistry;

public ChatService(

ChatClient chatClient,

FunctionCallbackRegistry functionCallbackRegistry

) {

this.chatClient = chatClient;

this.functionCallbackRegistry = functionCallbackRegistry;

}

public String chatWithFunction(String message) {

Prompt prompt = new Prompt(

new UserMessage(message),

functionCallbackRegistry.getFunctionCallbacks()

);

ChatResponse response = chatClient.call(prompt);

return response.getResult().getOutput().getContent();

}

}

```

7. 多模型支持

配置多个模型

```yaml

spring:

ai:

openai:

api-key: ${OPENAI_API_KEY}

anthropic:

api-key: ${ANTHROPIC_API_KEY}

azure:

openai:

api-key: ${AZURE_OPENAI_API_KEY}

endpoint: ${AZURE_OPENAI_ENDPOINT}

```

使用特定模型

```java

@Service

public class MultiModelService {

private final ChatClient openAiChatClient;

private final ChatClient anthropicChatClient;

public MultiModelService(

@Qualifier("openAiChatClient") ChatClient openAiChatClient,

@Qualifier("anthropicChatClient") ChatClient anthropicChatClient

) {

this.openAiChatClient = openAiChatClient;

this.anthropicChatClient = anthropicChatClient;

}

public String chatWithOpenAI(String message) {

return openAiChatClient.call(message);

}

public String chatWithAnthropic(String message) {

return anthropicChatClient.call(message);

}

}

```

最佳实践

1. 配置管理

  • 使用环境变量存储 API Key
  • 区分开发和生产环境配置
  • 配置合理的超时和重试策略

2. 错误处理

```java

@Service

public class ChatService {

private final ChatClient chatClient;

public String chat(String message) {

try {

return chatClient.call(message);

} catch (Exception e) {

// 处理错误

log.error("Chat error", e);

return "抱歉,处理请求时出现错误";

}

}

}

```

3. 性能优化

  • 使用流式响应提升用户体验
  • 合理使用缓存减少 API 调用
  • 批量处理 Embedding 请求

4. 成本控制

  • 选择合适的模型(GPT-3.5 vs GPT-4)
  • 限制 Token 使用量
  • 监控 API 调用情况

常用依赖

```xml

org.springframework.ai

spring-ai-openai-spring-boot-starter

org.springframework.ai

spring-ai-anthropic-spring-boot-starter

org.springframework.ai

spring-ai-azure-openai-spring-boot-starter

org.springframework.ai

spring-ai-pgvector-store-spring-boot-starter

```

示例 Prompt

  • "如何使用 Spring AI 集成 OpenAI?"
  • "Spring AI 中如何实现流式响应?"
  • "如何在 Spring AI 中使用 Embedding 和 Vector Store?"
  • "Spring AI 中如何实现 Function Calling?"
  • "如何配置 Spring AI 支持多个模型?"