🎯

bedrock-agentcore

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

bedrock-agentcore skill from adaptationio/skrillz

bedrock-agentcore

Installation

Install skill:
npx skills add https://github.com/adaptationio/skrillz --skill bedrock-agentcore
1
AddedJan 27, 2026

Skill Details

SKILL.md

Amazon Bedrock AgentCore platform for building, deploying, and operating production AI agents. Covers Runtime, Gateway, Browser, Code Interpreter, and Identity services. Use when building Bedrock agents, deploying AI agents to production, or integrating with AgentCore services.

Overview

# Amazon Bedrock AgentCore

Overview

Amazon Bedrock AgentCore is an agentic platform for building, deploying, and operating effective AI agents securely at scaleβ€”no infrastructure management needed. It provides framework-agnostic primitives that work with popular open-source frameworks (Strands, LangGraph, CrewAI, Autogen) and any model.

Purpose: Transform any AI agent into a production-ready application with enterprise-grade infrastructure

Pattern: Capabilities-based (6 independent service modules)

Key Principles (validated by AWS December 2025):

  1. Framework Agnostic - Works with any agent framework or model
  2. Zero Infrastructure - Fully managed, no ops overhead
  3. Session Isolation - Complete data isolation between sessions
  4. Enterprise Security - VPC, PrivateLink, identity integration
  5. Composable Services - Use only what you need
  6. Production Ready - Built for scale, reliability, and security

Quality Targets:

  • Deployment: < 5 minutes from code to production
  • Latency: Low-latency to 8-hour async workloads
  • Observability: Full CloudWatch integration

---

When to Use

Use bedrock-agentcore when:

  • Building production AI agents on AWS
  • Need managed infrastructure for agent deployment
  • Require session isolation and enterprise security
  • Want to use existing agent frameworks (LangGraph, CrewAI, etc.)
  • Need browser automation or code execution capabilities
  • Integrating with existing identity providers

When NOT to Use:

  • Simple Bedrock model invocations (use bedrock-runtime)
  • Standard Bedrock Agents with action groups (use bedrock-agent)
  • Non-AWS deployments

---

Prerequisites

Required

  • AWS account with Bedrock access
  • IAM permissions for AgentCore services
  • Python 3.10+ (for SDK)

Recommended

  • bedrock-agentcore-sdk-python installed
  • bedrock-agentcore-starter-toolkit CLI
  • Foundation model access enabled (Claude, etc.)

Installation

```bash

# Install SDK and CLI

pip install bedrock-agentcore strands-agents bedrock-agentcore-starter-toolkit

# Verify installation

agentcore --help

```

---

Core Services

1. AgentCore Runtime

Secure, session-isolated compute for running agent code.

Boto3 Client:

```python

import boto3

# Data plane operations

client = boto3.client('bedrock-agentcore')

# Control plane operations

control = boto3.client('bedrock-agentcore-control')

```

Create Agent Runtime:

```python

# Using starter toolkit

# agentcore configure -e main.py -n my-agent

# agentcore deploy

# Using boto3 control plane

response = control.create_agent_runtime(

name='my-production-agent',

description='Customer service agent',

agentRuntimeArtifact={

's3': {

'uri': 's3://my-bucket/agent-package.zip'

}

},

roleArn='arn:aws:iam::123456789012:role/AgentCoreExecutionRole',

pythonRuntime='PYTHON_3_13',

entryPoint=['main.py']

)

agent_runtime_arn = response['agentRuntimeArn']

```

Invoke Agent:

```python

# Invoke deployed agent

response = client.invoke_agent_runtime(

agentRuntimeArn='arn:aws:bedrock-agentcore:us-east-1:123456789012:agent-runtime/xxx',

runtimeSessionId='session-123',

payload={

'prompt': 'What is my order status?',

'context': {'user_id': 'user-456'}

}

)

result = response['payload']

print(result)

```

Agent Entry Point Structure:

```python

from bedrock_agentcore import BedrockAgentCoreApp

from strands import Agent

app = BedrockAgentCoreApp(debug=True)

agent = Agent()

@app.entrypoint

def invoke(payload):

"""Main agent entry point"""

user_message = payload.get("prompt", "Hello!")

app.logger.info(f"Processing: {user_message}")

result = agent(user_message)

return {"result": result.message}

if __name__ == "__main__":

app.run()

```

---

2. AgentCore Gateway

Transforms existing APIs and Lambda functions into agent-compatible tools with semantic search discovery.

Create Gateway:

```python

response = control.create_gateway(

name='customer-service-gateway',

description='Gateway for customer service tools',

protocolType='REST'

)

gateway_arn = response['gatewayArn']

```

Add Gateway Target (Tool):

```python

# Add an existing Lambda as a tool

response = control.create_gateway_target(

gatewayId='gateway-xxx',

name='GetOrderStatus',

description='Retrieves order status by order ID',

targetConfiguration={

'lambdaTarget': {

'lambdaArn': 'arn:aws:lambda:us-east-1:123456789012:function:GetOrder'

}

},

toolSchema={

'name': 'get_order_status',

'description': 'Get the current status of a customer order',

'inputSchema': {

'type': 'object',

'properties': {

'order_id': {

'type': 'string',

'description': 'The unique order identifier'

}

},

'required': ['order_id']

}

}

)

```

Synchronize Tools:

```python

# Sync gateway tools for discovery

control.synchronize_gateway_targets(

gatewayId='gateway-xxx'

)

```

---

3. Browser Runtime

Execute complex web-based workflows securely.

Start Browser Session:

```python

response = client.start_browser_session(

browserId='browser-xxx',

sessionConfiguration={

'timeout': 300,

'viewport': {'width': 1920, 'height': 1080}

}

)

session_id = response['browserSessionId']

```

Execute Browser Action:

```python

# Navigate and interact

response = client.update_browser_stream(

browserSessionId=session_id,

action={

'navigate': {'url': 'https://example.com'},

'click': {'selector': '#submit-button'},

'type': {'selector': '#search', 'text': 'query'}

}

)

```

---

4. Code Interpreter

Safely execute code for tasks like data analysis and visualization.

Start Code Interpreter Session:

```python

response = client.start_code_interpreter_session(

codeInterpreterId='interpreter-xxx'

)

session_id = response['codeInterpreterSessionId']

```

Execute Code:

```python

response = client.invoke_code_interpreter(

codeInterpreterSessionId=session_id,

code='''

import pandas as pd

import matplotlib.pyplot as plt

# Analyze data

df = pd.DataFrame({'x': [1,2,3,4,5], 'y': [2,4,6,8,10]})

plt.plot(df['x'], df['y'])

plt.savefig('output.png')

print(df.describe())

''',

language='PYTHON'

)

output = response['output']

files = response['files'] # Generated files

```

---

5. Identity Integration

Native integration with existing identity providers for authentication and permission delegation.

Create OAuth2 Provider:

```python

response = control.create_oauth2_credential_provider(

name='okta-provider',

credentialProviderVendor='OKTA',

oauth2ProviderConfig={

'clientId': 'your-client-id',

'clientSecret': 'your-client-secret',

'authorizationServerUrl': 'https://your-domain.okta.com/oauth2/default',

'scopes': ['openid', 'profile', 'email']

}

)

```

Create Workload Identity:

```python

response = control.create_workload_identity(

name='agent-identity',

allowedRoleArns=['arn:aws:iam::123456789012:role/AgentRole']

)

```

Get Access Token:

```python

# Get token for workload

response = client.get_workload_access_token(

workloadIdentityId='identity-xxx'

)

access_token = response['accessToken']

```

---

6. Observability

Real-time visibility via CloudWatch and OpenTelemetry.

Enable Observability:

```python

# In your agent entry point

from opentelemetry import trace

from opentelemetry.sdk.trace import TracerProvider

# Configure tracing

provider = TracerProvider()

trace.set_tracer_provider(provider)

# Entry point with OTel

# entryPoint: ['opentelemetry-instrument', 'main.py']

```

CloudWatch Metrics:

  • Token usage per session
  • Latency (p50, p95, p99)
  • Session duration
  • Error rates
  • Tool call success/failure

---

Boto3 Client Reference

Data Plane (`bedrock-agentcore`)

| Method | Purpose |

|--------|---------|

| invoke_agent_runtime | Execute agent logic |

| stop_runtime_session | Halt active session |

| list_sessions | List all sessions |

| start_browser_session | Initialize browser |

| stop_browser_session | End browser session |

| start_code_interpreter_session | Launch interpreter |

| invoke_code_interpreter | Execute code |

| batch_create_memory_records | Create memories |

| retrieve_memory_records | Fetch memories |

| get_workload_access_token | Get auth token |

| evaluate | Run evaluation |

Control Plane (`bedrock-agentcore-control`)

| Method | Purpose |

|--------|---------|

| create_agent_runtime | Create runtime |

| delete_agent_runtime | Remove runtime |

| update_agent_runtime | Modify runtime |

| create_gateway | Create gateway |

| create_gateway_target | Add tool |

| create_memory | Create memory store |

| create_policy | Create policy |

| create_evaluator | Create evaluator |

| create_browser | Create browser |

| create_code_interpreter | Create interpreter |

---

Quick Start: Hello World Agent

Step 1: Create Agent File

```python

# main.py

from bedrock_agentcore import BedrockAgentCoreApp

from strands import Agent

app = BedrockAgentCoreApp()

agent = Agent(model="anthropic.claude-sonnet-4-20250514-v1:0")

@app.entrypoint

def invoke(payload):

prompt = payload.get("prompt", "Hello!")

result = agent(prompt)

return {"response": result.message}

if __name__ == "__main__":

app.run()

```

Step 2: Configure and Deploy

```bash

# Configure

agentcore configure -e main.py -n hello-world-agent

# Test locally

python main.py &

curl -X POST http://localhost:8080/invocations \

-H "Content-Type: application/json" \

-d '{"prompt": "Hello!"}'

# Deploy to AWS

agentcore deploy

# Test deployed

agentcore invoke '{"prompt": "Hello from production!"}'

```

Step 3: Invoke Programmatically

```python

import boto3

client = boto3.client('bedrock-agentcore')

response = client.invoke_agent_runtime(

agentRuntimeArn='arn:aws:bedrock-agentcore:us-east-1:123456789012:agent-runtime/hello-world',

runtimeSessionId='test-session-1',

payload={'prompt': 'What can you help me with?'}

)

print(response['payload'])

```

---

Error Handling

```python

from botocore.exceptions import ClientError

try:

response = client.invoke_agent_runtime(

agentRuntimeArn=agent_arn,

runtimeSessionId='session-1',

payload={'prompt': 'test'}

)

except ClientError as e:

error_code = e.response['Error']['Code']

if error_code == 'ResourceNotFoundException':

print("Agent runtime not found")

elif error_code == 'ValidationException':

print("Invalid request parameters")

elif error_code == 'ThrottlingException':

print("Rate limited - implement backoff")

elif error_code == 'AccessDeniedException':

print("Check IAM permissions")

else:

raise

```

---

IAM Permissions

Minimum Execution Role

```json

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"bedrock-agentcore:InvokeAgentRuntime",

"bedrock-agentcore:StartBrowserSession",

"bedrock-agentcore:InvokeCodeInterpreter"

],

"Resource": "*"

},

{

"Effect": "Allow",

"Action": [

"bedrock:InvokeModel",

"bedrock:InvokeModelWithResponseStream"

],

"Resource": "arn:aws:bedrock:::foundation-model/"

},

{

"Effect": "Allow",

"Action": [

"logs:CreateLogGroup",

"logs:CreateLogStream",

"logs:PutLogEvents"

],

"Resource": "arn:aws:logs:::*"

}

]

}

```

---

Related Skills

  • bedrock-agentcore-policy: Cedar policy authoring and enforcement
  • bedrock-agentcore-evaluations: Agent testing and quality evaluation
  • bedrock-agentcore-memory: Episodic and short-term memory management
  • bedrock-agentcore-deployment: Production deployment patterns
  • bedrock-agentcore-multi-agent: Multi-agent orchestration (A2A protocol)
  • boto3-eks: For EKS-hosted agents
  • terraform-aws: Infrastructure as code

---

References

  • references/gateway-configuration.md - Detailed gateway setup
  • references/identity-integration.md - OAuth and workload identity
  • references/troubleshooting.md - Common issues and solutions

---

Sources

  • [Amazon Bedrock AgentCore](https://aws.amazon.com/bedrock/agentcore/)
  • [Boto3 BedrockAgentCore](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock-agentcore.html)
  • [AgentCore SDK Python](https://github.com/aws/bedrock-agentcore-sdk-python)
  • [AgentCore Starter Toolkit](https://github.com/aws/bedrock-agentcore-starter-toolkit)

More from this repository10

🎯
analysis🎯Skill

Performs comprehensive analysis of code, skills, processes, and data to extract actionable insights, identify patterns, and drive data-driven improvements.

🎯
auto-claude-troubleshooting🎯Skill

Automatically diagnoses and resolves Auto-Claude installation, configuration, and runtime issues across different platforms and environments.

🎯
xai-auth🎯Skill

Authenticates and configures xAI Grok API access using Twitter/X account credentials, enabling seamless integration with OpenAI-compatible SDK methods.

🎯
xai-financial-integration🎯Skill

Retrieve and integrate xAI Grok sentiment with financial data APIs to generate comprehensive market insights and analysis.

🎯
xai-crypto-sentiment🎯Skill

xai-crypto-sentiment skill from adaptationio/skrillz

🎯
twelvedata-api🎯Skill

Retrieves comprehensive financial market data including stocks, forex, crypto, and technical indicators using the Twelve Data API.

🎯
xai-x-search🎯Skill

Enables real-time Twitter/X searches using Grok API to extract insights, track trends, monitor accounts, and analyze social discussions.

🎯
xai-agent-tools🎯Skill

Enables autonomous agents to search X, web, execute code, and analyze documents with server-side tool management.

🎯
auto-claude-optimization🎯Skill

Optimizes Claude AI performance by reducing token usage, managing API costs, and improving build speed through intelligent model and context selection.

🎯
auto-claude-setup🎯Skill

Automates comprehensive installation and setup of Auto-Claude across Windows, macOS, Linux, and WSL with multi-platform support and dependency management.