🎯

xai-crypto-sentiment

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

xai-crypto-sentiment skill from adaptationio/skrillz

xai-crypto-sentiment

Installation

Install skill:
npx skills add https://github.com/adaptationio/skrillz --skill xai-crypto-sentiment
3
AddedJan 27, 2026

Skill Details

SKILL.md

Real-time cryptocurrency sentiment analysis using Twitter/X via Grok. Use when analyzing crypto sentiment, tracking whale activity, or gauging market fear/greed.

Overview

# xAI Crypto Sentiment Analysis

Real-time cryptocurrency sentiment from Crypto Twitter (CT) using Grok's native X integration.

Quick Start

```python

import os

from openai import OpenAI

client = OpenAI(

api_key=os.getenv("XAI_API_KEY"),

base_url="https://api.x.ai/v1"

)

def get_crypto_sentiment(coin: str) -> dict:

"""Get real-time sentiment for a cryptocurrency."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""Analyze Crypto Twitter sentiment for {coin}.

Return JSON:

{{

"coin": "{coin}",

"sentiment": {{

"overall": "bullish" | "bearish" | "neutral",

"score": -1.0 to 1.0,

"confidence": 0.0 to 1.0

}},

"fear_greed": "extreme fear" | "fear" | "neutral" | "greed" | "extreme greed",

"metrics": {{

"bullish_percent": 0-100,

"bearish_percent": 0-100,

"mention_volume": "high" | "medium" | "low",

"trend": "increasing" | "stable" | "decreasing"

}},

"whale_mentions": {{

"detected": true/false,

"sentiment": "accumulating" | "distributing" | "neutral",

"notable": [...]

}},

"narratives": ["narrative1", "narrative2"],

"fud_alerts": [...],

"fomo_level": "high" | "medium" | "low" | "none"

}}"""

}]

)

return response.choices[0].message.content

# Example

sentiment = get_crypto_sentiment("Bitcoin")

print(sentiment)

```

Crypto Twitter Influencers

```python

CRYPTO_INFLUENCERS = [

# Bitcoin Maxis

"saborskip",

"michael_saylor",

# Analysts

"CryptoCapo_",

"Pentosh1",

"ColdBloodShill",

# News

"WatcherGuru",

"whale_alert",

# DeFi

"DefiIgnas",

"Route2FI",

# Altcoins

"AltcoinGordon",

"CryptoKaleo"

]

```

Sentiment Functions

Bitcoin Market Sentiment

```python

def bitcoin_sentiment() -> dict:

"""Get comprehensive Bitcoin sentiment analysis."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": """Analyze Bitcoin sentiment on Crypto Twitter.

Return JSON:

{

"bitcoin": {

"sentiment_score": -1 to 1,

"fear_greed_index": 0-100,

"fear_greed_label": "...",

"trend": "bullish/bearish/consolidating"

},

"market_structure": {

"support_levels_mentioned": [...],

"resistance_levels_mentioned": [...],

"key_levels": [...]

},

"whale_activity": {

"accumulation_signals": true/false,

"distribution_signals": true/false,

"notable_moves": [...]

},

"narratives": {

"bullish": [...],

"bearish": [...]

},

"influencer_consensus": {

"bullish_count": n,

"bearish_count": n,

"key_calls": [...]

},

"on_chain_mentions": {

"exchange_flows": "inflows/outflows/neutral",

"wallet_activity": "..."

},

"macro_sentiment": {

"correlation_to_stocks": "...",

"fed_mentions": "...",

"institutional_interest": "..."

}

}"""

}]

)

return response.choices[0].message.content

```

Altcoin Season Detection

```python

def detect_altseason() -> dict:

"""Detect if altcoin season is emerging."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": """Analyze Crypto Twitter for altcoin season signals.

Return JSON:

{

"altseason_status": "active" | "emerging" | "not present",

"confidence": 0 to 1,

"signals": {

"btc_dominance_sentiment": "...",

"altcoin_volume": "high/medium/low",

"rotation_patterns": "...",

"new_narratives": [...]

},

"hot_sectors": [

{"sector": "...", "sentiment": ..., "top_coins": [...]}

],

"coins_trending": [

{"coin": "...", "sentiment": ..., "catalyst": "..."}

],

"risk_level": "high/medium/low",

"recommendation": "..."

}"""

}]

)

return response.choices[0].message.content

```

Token Sentiment Analysis

```python

def analyze_token(token: str, chain: str = None) -> dict:

"""Analyze sentiment for a specific token."""

chain_context = f" on {chain}" if chain else ""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""Analyze Crypto Twitter sentiment for {token}{chain_context}.

Return JSON:

{{

"token": "{token}",

"chain": "{chain or 'unknown'}",

"sentiment": {{

"score": -1 to 1,

"label": "...",

"volume": "high/medium/low"

}},

"community_health": {{

"engagement": "high/medium/low",

"holder_sentiment": "...",

"developer_activity_mentions": "..."

}},

"narratives": [...],

"catalysts": {{

"upcoming": [...],

"recent": [...]

}},

"risks": {{

"fud_topics": [...],

"concerns_raised": [...],

"rug_risk_mentions": true/false

}},

"influencer_mentions": [...],

"comparison_to_competitors": "..."

}}"""

}]

)

return response.choices[0].message.content

```

DeFi Protocol Sentiment

```python

def defi_protocol_sentiment(protocol: str) -> dict:

"""Analyze sentiment for a DeFi protocol."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""Analyze Crypto Twitter sentiment for {protocol} DeFi protocol.

Return JSON:

{{

"protocol": "{protocol}",

"sentiment": {{

"score": -1 to 1,

"trend": "improving/declining/stable"

}},

"tvl_sentiment": "growing/stable/declining concern",

"security_mentions": {{

"concerns": [...],

"audits_mentioned": [...],

"exploit_risk_perception": "high/medium/low"

}},

"yield_sentiment": "attractive/fair/unattractive",

"community_growth": "...",

"governance_sentiment": "...",

"competitors_mentioned": [...]

}}"""

}]

)

return response.choices[0].message.content

```

NFT Market Sentiment

```python

def nft_sentiment(collection: str = None) -> dict:

"""Analyze NFT market sentiment."""

target = f"the {collection} collection" if collection else "the NFT market"

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""Analyze Crypto Twitter sentiment for {target}.

Return JSON:

{{

"target": "{collection or 'NFT Market'}",

"sentiment": {{

"score": -1 to 1,

"market_phase": "bull/bear/recovery/mania"

}},

"volume_sentiment": "high/medium/low",

"floor_price_sentiment": "stable/rising/falling concern",

"trending_collections": [...],

"whale_activity": {{

"notable_buys": [...],

"notable_sales": [...]

}},

"narratives": [...],

"mint_sentiment": "hot/cooling/cold"

}}"""

}]

)

return response.choices[0].message.content

```

Whale Alert Monitoring

```python

def monitor_whale_alerts() -> dict:

"""Monitor whale activity mentions on CT."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": """Search Crypto Twitter for recent whale alerts and large transactions.

Focus on @whale_alert and similar accounts.

Return JSON:

{

"timestamp": "...",

"recent_whale_moves": [

{

"coin": "...",

"amount_usd": "...",

"direction": "exchange_inflow/exchange_outflow/wallet_transfer",

"interpretation": "bullish/bearish/neutral",

"source": "..."

}

],

"exchange_flow_summary": {

"net_flow": "inflows/outflows/balanced",

"interpretation": "..."

},

"accumulation_signals": [...],

"distribution_signals": [...],

"notable_wallet_activity": [...]

}"""

}]

)

return response.choices[0].message.content

```

FOMO/FUD Detection

```python

def detect_fomo_fud(coin: str) -> dict:

"""Detect FOMO or FUD patterns for a cryptocurrency."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""Analyze Crypto Twitter for FOMO and FUD signals around {coin}.

Return JSON:

{{

"coin": "{coin}",

"fomo_analysis": {{

"level": "extreme/high/moderate/low/none",

"triggers": [...],

"warning_signs": [...],

"sustainability": "likely/unlikely"

}},

"fud_analysis": {{

"level": "extreme/high/moderate/low/none",

"sources": [...],

"legitimacy": "valid concerns/coordinated/mixed",

"topics": [...]

}},

"manipulation_signals": {{

"detected": true/false,

"type": "pump/dump/coordinated/organic",

"evidence": [...]

}},

"contrarian_signal": {{

"extreme_fear": true/false,

"extreme_greed": true/false,

"actionable": "..."

}}

}}"""

}]

)

return response.choices[0].message.content

```

Crypto Market Dashboard

```python

def crypto_market_dashboard() -> dict:

"""Get overall crypto market sentiment dashboard."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": """Create a comprehensive Crypto Twitter market dashboard.

Return JSON:

{

"timestamp": "...",

"market_sentiment": {

"overall": -1 to 1,

"fear_greed": 0-100,

"trend": "bullish/bearish/neutral"

},

"bitcoin": {

"sentiment": ...,

"key_levels": [...]

},

"ethereum": {

"sentiment": ...,

"key_topics": [...]

},

"top_trending_coins": [

{"coin": "...", "sentiment": ..., "reason": "..."}

],

"sector_performance": [

{"sector": "L1/L2/DeFi/NFT/Meme", "sentiment": ...}

],

"hot_narratives": [...],

"risk_alerts": [...],

"whale_summary": "...",

"recommended_focus": [...]

}"""

}]

)

return response.choices[0].message.content

```

Best Practices

1. Crypto-Specific Considerations

  • CT is highly volatile - sentiment can shift quickly
  • Bot activity is prevalent - look for organic signals
  • Influencer manipulation is common - verify across sources

2. Timing Matters

  • US/EU overlap often sees highest activity
  • Asian session can have different sentiment
  • Weekend sentiment differs from weekdays

3. Filter for Quality

```python

# Focus on accounts with history, not fresh accounts pumping

"Focus on accounts older than 6 months with consistent posting history"

```

4. Watch for Coordinated Activity

```python

# Detect potential pump and dump schemes

"Flag any coordinated posting patterns or sudden volume spikes from new accounts"

```

Related Skills

  • xai-stock-sentiment - Stock analysis
  • xai-x-search - Raw X search
  • xai-sentiment - General sentiment
  • xai-financial-integration - Price data integration

References

  • [xAI Agent Tools](https://x.ai/news/grok-4-1-fast/)
  • [Crypto Sentiment Guide](https://docs.x.ai/cookbook)

More from this repository10

🎯
analysis🎯Skill

Performs comprehensive analysis of code, skills, processes, and data to extract actionable insights, identify patterns, and drive data-driven improvements.

🎯
auto-claude-setup🎯Skill

Automates comprehensive installation and setup of Auto-Claude across Windows, macOS, Linux, and WSL with multi-platform support and dependency management.

🎯
xai-auth🎯Skill

Authenticates and configures xAI Grok API access using Twitter/X account credentials, enabling seamless integration with OpenAI-compatible SDK methods.

🎯
xai-financial-integration🎯Skill

Retrieve and integrate xAI Grok sentiment with financial data APIs to generate comprehensive market insights and analysis.

🎯
twelvedata-api🎯Skill

Retrieves comprehensive financial market data including stocks, forex, crypto, and technical indicators using the Twelve Data API.

🎯
auto-claude-troubleshooting🎯Skill

Automatically diagnoses and resolves Auto-Claude installation, configuration, and runtime issues across different platforms and environments.

🎯
xai-x-search🎯Skill

Enables real-time Twitter/X searches using Grok API to extract insights, track trends, monitor accounts, and analyze social discussions.

🎯
xai-agent-tools🎯Skill

Enables autonomous agents to search X, web, execute code, and analyze documents with server-side tool management.

🎯
auto-claude-optimization🎯Skill

Optimizes Claude AI performance by reducing token usage, managing API costs, and improving build speed through intelligent model and context selection.

🎯
auto-claude-memory🎯Skill

Enables persistent, cross-session memory with semantic search using a graph-based knowledge system across multiple AI providers.