🎯

auto-claude-memory

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

Enables persistent, cross-session memory with semantic search using a graph-based knowledge system across multiple AI providers.

auto-claude-memory

Installation

Install skill:
npx skills add https://github.com/adaptationio/skrillz --skill auto-claude-memory
3
AddedJan 27, 2026

Skill Details

SKILL.md

Auto-Claude Graphiti memory system configuration and usage. Use when setting up memory persistence, configuring LLM/embedding providers, querying knowledge graph, or optimizing memory performance.

Overview

# Auto-Claude Memory System

Graphiti-based persistent memory for cross-session context retention.

Overview

Auto-Claude uses Graphiti with embedded LadybugDB for memory:

  • No Docker required - Embedded graph database
  • Multi-provider support - OpenAI, Anthropic, Ollama, Google AI, Azure
  • Semantic search - Find relevant context across sessions
  • Knowledge graph - Entity relationships and facts

Architecture

```

Agent Session

β”‚

β–Ό

Memory Manager

β”‚

β”œβ”€β”€β–Ά Add Episode (new learnings)

β”œβ”€β”€β–Ά Search Nodes (find entities)

β”œβ”€β”€β–Ά Search Facts (find relationships)

└──▢ Get Context (relevant memories)

β”‚

β–Ό

Graphiti (Knowledge Graph)

β”‚

β–Ό

LadybugDB (Embedded Storage)

```

Configuration

Enable Memory System

In apps/backend/.env:

```bash

# Enable Graphiti memory (default: true)

GRAPHITI_ENABLED=true

```

Provider Selection

Choose LLM and embedding providers:

```bash

# LLM provider: openai | anthropic | azure_openai | ollama | google | openrouter

GRAPHITI_LLM_PROVIDER=openai

# Embedder provider: openai | voyage | azure_openai | ollama | google | openrouter

GRAPHITI_EMBEDDER_PROVIDER=openai

```

Provider Configurations

#### OpenAI (Simplest)

```bash

GRAPHITI_ENABLED=true

GRAPHITI_LLM_PROVIDER=openai

GRAPHITI_EMBEDDER_PROVIDER=openai

OPENAI_API_KEY=sk-xxxxxxxxxxxxxxxx

OPENAI_MODEL=gpt-4o-mini

OPENAI_EMBEDDING_MODEL=text-embedding-3-small

```

#### Anthropic + Voyage (High Quality)

```bash

GRAPHITI_ENABLED=true

GRAPHITI_LLM_PROVIDER=anthropic

GRAPHITI_EMBEDDER_PROVIDER=voyage

ANTHROPIC_API_KEY=sk-ant-xxxxxxxx

GRAPHITI_ANTHROPIC_MODEL=claude-sonnet-4-5-latest

VOYAGE_API_KEY=pa-xxxxxxxx

VOYAGE_EMBEDDING_MODEL=voyage-3

```

#### Ollama (Fully Offline)

```bash

GRAPHITI_ENABLED=true

GRAPHITI_LLM_PROVIDER=ollama

GRAPHITI_EMBEDDER_PROVIDER=ollama

OLLAMA_BASE_URL=http://localhost:11434

OLLAMA_LLM_MODEL=deepseek-r1:7b

OLLAMA_EMBEDDING_MODEL=nomic-embed-text

OLLAMA_EMBEDDING_DIM=768

```

Prerequisites:

```bash

# Install Ollama

curl -fsSL https://ollama.ai/install.sh | sh

# Pull models

ollama pull deepseek-r1:7b

ollama pull nomic-embed-text

```

#### Google AI (Gemini)

```bash

GRAPHITI_ENABLED=true

GRAPHITI_LLM_PROVIDER=google

GRAPHITI_EMBEDDER_PROVIDER=google

GOOGLE_API_KEY=AIzaSyxxxxxxxx

GOOGLE_LLM_MODEL=gemini-2.0-flash

GOOGLE_EMBEDDING_MODEL=text-embedding-004

```

#### Azure OpenAI (Enterprise)

```bash

GRAPHITI_ENABLED=true

GRAPHITI_LLM_PROVIDER=azure_openai

GRAPHITI_EMBEDDER_PROVIDER=azure_openai

AZURE_OPENAI_API_KEY=xxxxxxxx

AZURE_OPENAI_BASE_URL=https://your-resource.openai.azure.com/...

AZURE_OPENAI_LLM_DEPLOYMENT=gpt-4

AZURE_OPENAI_EMBEDDING_DEPLOYMENT=text-embedding-3-small

```

#### OpenRouter (Multi-Provider)

```bash

GRAPHITI_ENABLED=true

GRAPHITI_LLM_PROVIDER=openrouter

GRAPHITI_EMBEDDER_PROVIDER=openrouter

OPENROUTER_API_KEY=sk-or-xxxxxxxx

OPENROUTER_LLM_MODEL=anthropic/claude-3.5-sonnet

OPENROUTER_EMBEDDING_MODEL=openai/text-embedding-3-small

```

Database Settings

```bash

# Database name (default: auto_claude_memory)

GRAPHITI_DATABASE=auto_claude_memory

# Storage path (default: ~/.auto-claude/memories)

GRAPHITI_DB_PATH=~/.auto-claude/memories

```

Memory Operations

How Memory Works

  1. During Build

- Agent discovers patterns, gotchas, solutions

- Memory Manager extracts insights

- Insights stored as episodes in knowledge graph

  1. New Session

- Agent queries for relevant context

- Memory returns related insights

- Agent builds on previous learnings

MCP Tools

When GRAPHITI_MCP_URL is set, agents can use:

| Tool | Purpose |

|------|---------|

| search_nodes | Search entity summaries |

| search_facts | Search relationships between entities |

| add_episode | Add data to knowledge graph |

| get_episodes | Retrieve recent episodes |

| get_entity_edge | Get specific entity/relationship |

Python API

```python

from integrations.graphiti.memory import get_graphiti_memory

# Get memory instance

memory = get_graphiti_memory(spec_dir, project_dir)

# Get context for session

context = memory.get_context_for_session("Implementing feature X")

# Add insight from session

memory.add_session_insight("Pattern: use React hooks for state")

# Search for relevant memories

results = memory.search("authentication patterns")

```

Memory Storage

Location

```

~/.auto-claude/memories/

β”œβ”€β”€ auto_claude_memory/ # Main database

β”‚ β”œβ”€β”€ nodes/ # Entity nodes

β”‚ β”œβ”€β”€ edges/ # Relationships

β”‚ └── episodes/ # Session insights

└── embeddings/ # Vector embeddings

```

Per-Spec Memory

```

.auto-claude/specs/001-feature/

└── graphiti/ # Spec-specific memory

β”œβ”€β”€ insights.json # Extracted insights

└── context.json # Session context

```

Querying Memory

Command Line

```bash

cd apps/backend

# Query memory

python query_memory.py --search "authentication"

# List recent episodes

python query_memory.py --recent 10

# Get entity details

python query_memory.py --entity "UserService"

```

Memory in Action

Example session:

```

Session 1:

Agent: "Implemented OAuth login, discovered need to handle token refresh"

Memory: Stores insight about token refresh pattern

Session 2:

Agent: "Implementing user profile..."

Memory: "Previously learned about token refresh in OAuth implementation"

Agent: Uses learned pattern for profile API calls

```

Best Practices

Effective Memory Use

  1. Let agents learn naturally

- Don't force memory storage

- Agents automatically extract insights

  1. Use semantic search

- Query with natural language

- Memory finds related concepts

  1. Clean up periodically

- Remove outdated insights

- Update incorrect information

Provider Selection

| Use Case | Recommended |

|----------|-------------|

| Production | OpenAI or Anthropic+Voyage |

| Development | Ollama (free, offline) |

| Enterprise | Azure OpenAI |

| Budget | OpenRouter or Google AI |

Performance Tips

  1. Embedding model selection

- text-embedding-3-small: Fast, good quality

- text-embedding-3-large: Better quality, slower

  1. LLM model selection

- gpt-4o-mini: Fast, cost-effective

- claude-sonnet: High quality reasoning

  1. Ollama optimization

```bash

# Use smaller models for speed

OLLAMA_LLM_MODEL=llama3.2:3b

OLLAMA_EMBEDDING_MODEL=all-minilm

OLLAMA_EMBEDDING_DIM=384

```

Troubleshooting

Memory Not Working

```bash

# Check if enabled

grep GRAPHITI apps/backend/.env

# Verify provider credentials

python -c "from integrations.graphiti.memory import get_graphiti_memory; print('OK')"

```

Provider Errors

```bash

# OpenAI

curl -H "Authorization: Bearer $OPENAI_API_KEY" https://api.openai.com/v1/models

# Ollama

curl http://localhost:11434/api/tags

# Check logs

DEBUG=true python query_memory.py --search "test"

```

Database Corruption

```bash

# Backup and reset

mv ~/.auto-claude/memories ~/.auto-claude/memories.backup

python query_memory.py --search "test" # Creates fresh DB

```

Embedding Dimension Mismatch

If changing embedding models:

```bash

# Clear existing embeddings

rm -rf ~/.auto-claude/memories/embeddings

# Restart to re-embed

python run.py --spec 001

```

Advanced Usage

Custom Memory Integration

```python

from integrations.graphiti.queries_pkg.graphiti import GraphitiMemory

# Create custom memory instance

memory = GraphitiMemory(

database="custom_db",

db_path="/path/to/storage",

llm_provider="anthropic",

embedder_provider="voyage"

)

# Custom operations

memory.add_entity("UserService", {"type": "service", "purpose": "auth"})

memory.add_relationship("UserService", "uses", "Database")

```

Memory MCP Server

Run standalone memory server:

```bash

# Start Graphiti MCP server

GRAPHITI_MCP_URL=http://localhost:8000/mcp/ python -m integrations.graphiti.server

```

Related Skills

  • auto-claude-setup: Initial configuration
  • auto-claude-optimization: Performance tuning
  • auto-claude-troubleshooting: Debugging

More from this repository10

🎯
analysis🎯Skill

Performs comprehensive analysis of code, skills, processes, and data to extract actionable insights, identify patterns, and drive data-driven improvements.

🎯
auto-claude-troubleshooting🎯Skill

Automatically diagnoses and resolves Auto-Claude installation, configuration, and runtime issues across different platforms and environments.

🎯
xai-auth🎯Skill

Authenticates and configures xAI Grok API access using Twitter/X account credentials, enabling seamless integration with OpenAI-compatible SDK methods.

🎯
xai-financial-integration🎯Skill

Retrieve and integrate xAI Grok sentiment with financial data APIs to generate comprehensive market insights and analysis.

🎯
xai-crypto-sentiment🎯Skill

xai-crypto-sentiment skill from adaptationio/skrillz

🎯
twelvedata-api🎯Skill

Retrieves comprehensive financial market data including stocks, forex, crypto, and technical indicators using the Twelve Data API.

🎯
xai-x-search🎯Skill

Enables real-time Twitter/X searches using Grok API to extract insights, track trends, monitor accounts, and analyze social discussions.

🎯
xai-agent-tools🎯Skill

Enables autonomous agents to search X, web, execute code, and analyze documents with server-side tool management.

🎯
auto-claude-optimization🎯Skill

Optimizes Claude AI performance by reducing token usage, managing API costs, and improving build speed through intelligent model and context selection.

🎯
auto-claude-setup🎯Skill

Automates comprehensive installation and setup of Auto-Claude across Windows, macOS, Linux, and WSL with multi-platform support and dependency management.