auto-claude-memory
π―Skillfrom adaptationio/skrillz
Enables persistent, cross-session memory with semantic search using a graph-based knowledge system across multiple AI providers.
Installation
npx skills add https://github.com/adaptationio/skrillz --skill auto-claude-memorySkill Details
Auto-Claude Graphiti memory system configuration and usage. Use when setting up memory persistence, configuring LLM/embedding providers, querying knowledge graph, or optimizing memory performance.
Overview
# Auto-Claude Memory System
Graphiti-based persistent memory for cross-session context retention.
Overview
Auto-Claude uses Graphiti with embedded LadybugDB for memory:
- No Docker required - Embedded graph database
- Multi-provider support - OpenAI, Anthropic, Ollama, Google AI, Azure
- Semantic search - Find relevant context across sessions
- Knowledge graph - Entity relationships and facts
Architecture
```
Agent Session
β
βΌ
Memory Manager
β
ββββΆ Add Episode (new learnings)
ββββΆ Search Nodes (find entities)
ββββΆ Search Facts (find relationships)
ββββΆ Get Context (relevant memories)
β
βΌ
Graphiti (Knowledge Graph)
β
βΌ
LadybugDB (Embedded Storage)
```
Configuration
Enable Memory System
In apps/backend/.env:
```bash
# Enable Graphiti memory (default: true)
GRAPHITI_ENABLED=true
```
Provider Selection
Choose LLM and embedding providers:
```bash
# LLM provider: openai | anthropic | azure_openai | ollama | google | openrouter
GRAPHITI_LLM_PROVIDER=openai
# Embedder provider: openai | voyage | azure_openai | ollama | google | openrouter
GRAPHITI_EMBEDDER_PROVIDER=openai
```
Provider Configurations
#### OpenAI (Simplest)
```bash
GRAPHITI_ENABLED=true
GRAPHITI_LLM_PROVIDER=openai
GRAPHITI_EMBEDDER_PROVIDER=openai
OPENAI_API_KEY=sk-xxxxxxxxxxxxxxxx
OPENAI_MODEL=gpt-4o-mini
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
```
#### Anthropic + Voyage (High Quality)
```bash
GRAPHITI_ENABLED=true
GRAPHITI_LLM_PROVIDER=anthropic
GRAPHITI_EMBEDDER_PROVIDER=voyage
ANTHROPIC_API_KEY=sk-ant-xxxxxxxx
GRAPHITI_ANTHROPIC_MODEL=claude-sonnet-4-5-latest
VOYAGE_API_KEY=pa-xxxxxxxx
VOYAGE_EMBEDDING_MODEL=voyage-3
```
#### Ollama (Fully Offline)
```bash
GRAPHITI_ENABLED=true
GRAPHITI_LLM_PROVIDER=ollama
GRAPHITI_EMBEDDER_PROVIDER=ollama
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_LLM_MODEL=deepseek-r1:7b
OLLAMA_EMBEDDING_MODEL=nomic-embed-text
OLLAMA_EMBEDDING_DIM=768
```
Prerequisites:
```bash
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
# Pull models
ollama pull deepseek-r1:7b
ollama pull nomic-embed-text
```
#### Google AI (Gemini)
```bash
GRAPHITI_ENABLED=true
GRAPHITI_LLM_PROVIDER=google
GRAPHITI_EMBEDDER_PROVIDER=google
GOOGLE_API_KEY=AIzaSyxxxxxxxx
GOOGLE_LLM_MODEL=gemini-2.0-flash
GOOGLE_EMBEDDING_MODEL=text-embedding-004
```
#### Azure OpenAI (Enterprise)
```bash
GRAPHITI_ENABLED=true
GRAPHITI_LLM_PROVIDER=azure_openai
GRAPHITI_EMBEDDER_PROVIDER=azure_openai
AZURE_OPENAI_API_KEY=xxxxxxxx
AZURE_OPENAI_BASE_URL=https://your-resource.openai.azure.com/...
AZURE_OPENAI_LLM_DEPLOYMENT=gpt-4
AZURE_OPENAI_EMBEDDING_DEPLOYMENT=text-embedding-3-small
```
#### OpenRouter (Multi-Provider)
```bash
GRAPHITI_ENABLED=true
GRAPHITI_LLM_PROVIDER=openrouter
GRAPHITI_EMBEDDER_PROVIDER=openrouter
OPENROUTER_API_KEY=sk-or-xxxxxxxx
OPENROUTER_LLM_MODEL=anthropic/claude-3.5-sonnet
OPENROUTER_EMBEDDING_MODEL=openai/text-embedding-3-small
```
Database Settings
```bash
# Database name (default: auto_claude_memory)
GRAPHITI_DATABASE=auto_claude_memory
# Storage path (default: ~/.auto-claude/memories)
GRAPHITI_DB_PATH=~/.auto-claude/memories
```
Memory Operations
How Memory Works
- During Build
- Agent discovers patterns, gotchas, solutions
- Memory Manager extracts insights
- Insights stored as episodes in knowledge graph
- New Session
- Agent queries for relevant context
- Memory returns related insights
- Agent builds on previous learnings
MCP Tools
When GRAPHITI_MCP_URL is set, agents can use:
| Tool | Purpose |
|------|---------|
| search_nodes | Search entity summaries |
| search_facts | Search relationships between entities |
| add_episode | Add data to knowledge graph |
| get_episodes | Retrieve recent episodes |
| get_entity_edge | Get specific entity/relationship |
Python API
```python
from integrations.graphiti.memory import get_graphiti_memory
# Get memory instance
memory = get_graphiti_memory(spec_dir, project_dir)
# Get context for session
context = memory.get_context_for_session("Implementing feature X")
# Add insight from session
memory.add_session_insight("Pattern: use React hooks for state")
# Search for relevant memories
results = memory.search("authentication patterns")
```
Memory Storage
Location
```
~/.auto-claude/memories/
βββ auto_claude_memory/ # Main database
β βββ nodes/ # Entity nodes
β βββ edges/ # Relationships
β βββ episodes/ # Session insights
βββ embeddings/ # Vector embeddings
```
Per-Spec Memory
```
.auto-claude/specs/001-feature/
βββ graphiti/ # Spec-specific memory
βββ insights.json # Extracted insights
βββ context.json # Session context
```
Querying Memory
Command Line
```bash
cd apps/backend
# Query memory
python query_memory.py --search "authentication"
# List recent episodes
python query_memory.py --recent 10
# Get entity details
python query_memory.py --entity "UserService"
```
Memory in Action
Example session:
```
Session 1:
Agent: "Implemented OAuth login, discovered need to handle token refresh"
Memory: Stores insight about token refresh pattern
Session 2:
Agent: "Implementing user profile..."
Memory: "Previously learned about token refresh in OAuth implementation"
Agent: Uses learned pattern for profile API calls
```
Best Practices
Effective Memory Use
- Let agents learn naturally
- Don't force memory storage
- Agents automatically extract insights
- Use semantic search
- Query with natural language
- Memory finds related concepts
- Clean up periodically
- Remove outdated insights
- Update incorrect information
Provider Selection
| Use Case | Recommended |
|----------|-------------|
| Production | OpenAI or Anthropic+Voyage |
| Development | Ollama (free, offline) |
| Enterprise | Azure OpenAI |
| Budget | OpenRouter or Google AI |
Performance Tips
- Embedding model selection
- text-embedding-3-small: Fast, good quality
- text-embedding-3-large: Better quality, slower
- LLM model selection
- gpt-4o-mini: Fast, cost-effective
- claude-sonnet: High quality reasoning
- Ollama optimization
```bash
# Use smaller models for speed
OLLAMA_LLM_MODEL=llama3.2:3b
OLLAMA_EMBEDDING_MODEL=all-minilm
OLLAMA_EMBEDDING_DIM=384
```
Troubleshooting
Memory Not Working
```bash
# Check if enabled
grep GRAPHITI apps/backend/.env
# Verify provider credentials
python -c "from integrations.graphiti.memory import get_graphiti_memory; print('OK')"
```
Provider Errors
```bash
# OpenAI
curl -H "Authorization: Bearer $OPENAI_API_KEY" https://api.openai.com/v1/models
# Ollama
curl http://localhost:11434/api/tags
# Check logs
DEBUG=true python query_memory.py --search "test"
```
Database Corruption
```bash
# Backup and reset
mv ~/.auto-claude/memories ~/.auto-claude/memories.backup
python query_memory.py --search "test" # Creates fresh DB
```
Embedding Dimension Mismatch
If changing embedding models:
```bash
# Clear existing embeddings
rm -rf ~/.auto-claude/memories/embeddings
# Restart to re-embed
python run.py --spec 001
```
Advanced Usage
Custom Memory Integration
```python
from integrations.graphiti.queries_pkg.graphiti import GraphitiMemory
# Create custom memory instance
memory = GraphitiMemory(
database="custom_db",
db_path="/path/to/storage",
llm_provider="anthropic",
embedder_provider="voyage"
)
# Custom operations
memory.add_entity("UserService", {"type": "service", "purpose": "auth"})
memory.add_relationship("UserService", "uses", "Database")
```
Memory MCP Server
Run standalone memory server:
```bash
# Start Graphiti MCP server
GRAPHITI_MCP_URL=http://localhost:8000/mcp/ python -m integrations.graphiti.server
```
Related Skills
- auto-claude-setup: Initial configuration
- auto-claude-optimization: Performance tuning
- auto-claude-troubleshooting: Debugging
More from this repository10
Performs comprehensive analysis of code, skills, processes, and data to extract actionable insights, identify patterns, and drive data-driven improvements.
Automatically diagnoses and resolves Auto-Claude installation, configuration, and runtime issues across different platforms and environments.
Authenticates and configures xAI Grok API access using Twitter/X account credentials, enabling seamless integration with OpenAI-compatible SDK methods.
Retrieve and integrate xAI Grok sentiment with financial data APIs to generate comprehensive market insights and analysis.
xai-crypto-sentiment skill from adaptationio/skrillz
Retrieves comprehensive financial market data including stocks, forex, crypto, and technical indicators using the Twelve Data API.
Enables real-time Twitter/X searches using Grok API to extract insights, track trends, monitor accounts, and analyze social discussions.
Enables autonomous agents to search X, web, execute code, and analyze documents with server-side tool management.
Optimizes Claude AI performance by reducing token usage, managing API costs, and improving build speed through intelligent model and context selection.
Automates comprehensive installation and setup of Auto-Claude across Windows, macOS, Linux, and WSL with multi-platform support and dependency management.