gemini-3-multimodal
π―Skillfrom adaptationio/skrillz
gemini-3-multimodal skill from adaptationio/skrillz
Part of
adaptationio/skrillz(191 items)
Installation
/plugin marketplace add adaptationio/Skrillz/plugin install skrillz@adaptationio-Skrillz/plugin enable skrillz@adaptationio-Skrillz/plugin marketplace add /path/to/skrillz/plugin install skrillz@local+ 4 more commands
Skill Details
Process multimodal inputs (images, video, audio, PDFs) with Gemini 3 Pro. Covers image understanding, video analysis, audio processing, document extraction, media resolution control, OCR, and token optimization. Use when analyzing images, processing video, transcribing audio, extracting PDF content, or working with multimodal data.
Overview
# Gemini 3 Pro Multimodal Input Processing
Comprehensive guide for processing multimodal inputs with Gemini 3 Pro, including image understanding, video analysis, audio processing, and PDF document extraction. This skill focuses on INPUT processing (analyzing media) - see gemini-3-image-generation for OUTPUT (generating images).
Overview
Gemini 3 Pro provides native multimodal capabilities for understanding and analyzing various media types. This skill covers all input processing operations with granular control over quality, performance, and token consumption.
Key Capabilities
- Image Understanding: Object detection, OCR, visual Q&A, code from screenshots
- Video Processing: Up to 1 hour of video, frame analysis, OCR
- Audio Processing: Up to 9.5 hours of audio, speech understanding
- PDF Documents: Native PDF support, multi-page analysis, text extraction
- Media Resolution Control: Low/medium/high resolution for token optimization
- Token Optimization: Granular control over processing costs
When to Use This Skill
- Analyzing images, photos, or screenshots
- Processing video content for insights
- Transcribing or understanding audio/speech
- Extracting information from PDF documents
- Building multimodal applications
- Optimizing media processing costs
---
Quick Start
Prerequisites
- Gemini API setup (see
gemini-3-pro-apiskill) - Media files in supported formats
Python Quick Start
```python
import google.generativeai as genai
from pathlib import Path
genai.configure(api_key="YOUR_API_KEY")
model = genai.GenerativeModel("gemini-3-pro-preview")
# Upload and analyze image
image_file = genai.upload_file(Path("photo.jpg"))
response = model.generate_content([
"What's in this image?",
image_file
])
print(response.text)
```
Node.js Quick Start
```typescript
import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager } from "@google/generative-ai/server";
import fs from "fs";
const genAI = new GoogleGenerativeAI("YOUR_API_KEY");
const fileManager = new GoogleAIFileManager("YOUR_API_KEY");
// Upload and analyze image
const uploadResult = await fileManager.uploadFile("photo.jpg", {
mimeType: "image/jpeg"
});
const model = genAI.getGenerativeModel({ model: "gemini-3-pro-preview" });
const result = await model.generateContent([
"What's in this image?",
{ fileData: { fileUri: uploadResult.file.uri, mimeType: uploadResult.file.mimeType } }
]);
console.log(result.response.text());
```
---
Core Tasks
Task 1: Analyze Image Content
Goal: Extract information, objects, text, or insights from images.
Use Cases:
- Object detection and recognition
- OCR (text extraction from images)
- Visual Q&A
- Code generation from UI screenshots
- Chart/diagram analysis
- Product identification
Python Example:
```python
import google.generativeai as genai
from pathlib import Path
genai.configure(api_key="YOUR_API_KEY")
# Configure model with high resolution for best quality
model = genai.GenerativeModel(
"gemini-3-pro-preview",
generation_config={
"thinking_level": "high",
"media_resolution": "high" # 1,120 tokens per image
}
)
# Upload image
image_path = Path("screenshot.png")
image_file = genai.upload_file(image_path)
# Analyze with specific prompt
response = model.generate_content([
"""Analyze this image and provide:
1. Main objects and their locations
2. Any visible text (OCR)
3. Overall context and purpose
4. If code/UI: describe the functionality
""",
image_file
])
print(response.text)
# Check token usage
print(f"Tokens used: {response.usage_metadata.total_token_count}")
```
Node.js Example:
```typescript
import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY!);
const fileManager = new GoogleAIFileManager(process.env.GEMINI_API_KEY!);
// Upload image
const uploadResult = await fileManager.uploadFile("screenshot.png", {
mimeType: "image/png"
});
// Configure model with high resolution
const model = genAI.getGenerativeModel({
model: "gemini-3-pro-preview",
generationConfig: {
thinking_level: "high",
media_resolution: "high" // Best quality for OCR
}
});
const result = await model.generateContent([
`Analyze this image and provide:
1. Main objects and their locations
2. Any visible text (OCR)
3. Overall context and purpose`,
{ fileData: { fileUri: uploadResult.file.uri, mimeType: uploadResult.file.mimeType } }
]);
console.log(result.response.text());
```
Resolution Options:
| Resolution | Tokens per Image | Best For |
|-----------|------------------|----------|
| low | 280 tokens | Quick analysis, low detail |
| medium | 560 tokens | Balanced quality/cost |
| high | 1,120 tokens | OCR, fine details, small text |
Supported Formats: JPEG, PNG, WEBP, HEIC, HEIF
See: references/image-understanding.md for advanced patterns
---
Task 2: Process Video Content
Goal: Analyze video content, extract insights, perform frame-by-frame analysis.
Use Cases:
- Video summarization
- Object tracking
- Scene detection
- Video OCR
- Content moderation
- Educational video analysis
Python Example:
```python
import google.generativeai as genai
from pathlib import Path
genai.configure(api_key="YOUR_API_KEY")
# Configure for video processing
model = genai.GenerativeModel(
"gemini-3-pro-preview",
generation_config={
"thinking_level": "high",
"media_resolution": "medium" # 70 tokens/frame (balanced)
}
)
# Upload video (up to 1 hour supported)
video_path = Path("tutorial.mp4")
video_file = genai.upload_file(video_path)
# Wait for processing
import time
while video_file.state.name == "PROCESSING":
time.sleep(5)
video_file = genai.get_file(video_file.name)
if video_file.state.name == "FAILED":
raise ValueError("Video processing failed")
# Analyze video
response = model.generate_content([
"""Analyze this video and provide:
1. Overall summary of content
2. Key scenes and timestamps
3. Main topics covered
4. Any visible text throughout the video
""",
video_file
])
print(response.text)
print(f"Tokens used: {response.usage_metadata.total_token_count}")
```
Node.js Example:
```typescript
import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY!);
const fileManager = new GoogleAIFileManager(process.env.GEMINI_API_KEY!);
// Upload video
const uploadResult = await fileManager.uploadFile("tutorial.mp4", {
mimeType: "video/mp4"
});
// Wait for processing
let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
await new Promise(resolve => setTimeout(resolve, 5000));
file = await fileManager.getFile(uploadResult.file.name);
}
if (file.state === FileState.FAILED) {
throw new Error("Video processing failed");
}
// Analyze video
const model = genAI.getGenerativeModel({
model: "gemini-3-pro-preview",
generationConfig: {
media_resolution: "medium"
}
});
const result = await model.generateContent([
`Analyze this video and provide:
1. Overall summary
2. Key scenes and timestamps
3. Main topics covered`,
{ fileData: { fileUri: file.uri, mimeType: file.mimeType } }
]);
console.log(result.response.text());
```
Video Specs:
- Max Duration: 1 hour
- Formats: MP4, MOV, AVI, etc.
- Resolution Options: Low (70 tokens/frame), Medium (70 tokens/frame), High (280 tokens/frame)
- OCR: Available with high resolution
See: references/video-processing.md for advanced patterns
---
Task 3: Process Audio/Speech
Goal: Transcribe and understand audio content, process speech.
Use Cases:
- Audio transcription
- Speech analysis
- Podcast summarization
- Meeting notes
- Language understanding
- Audio classification
Python Example:
```python
import google.generativeai as genai
from pathlib import Path
genai.configure(api_key="YOUR_API_KEY")
model = genai.GenerativeModel("gemini-3-pro-preview")
# Upload audio file (up to 9.5 hours supported)
audio_path = Path("podcast.mp3")
audio_file = genai.upload_file(audio_path)
# Wait for processing
import time
while audio_file.state.name == "PROCESSING":
time.sleep(5)
audio_file = genai.get_file(audio_file.name)
# Process audio
response = model.generate_content([
"""Process this audio and provide:
1. Full transcription
2. Summary of main points
3. Key speakers (if multiple)
4. Important timestamps
5. Action items or conclusions
""",
audio_file
])
print(response.text)
print(f"Tokens used: {response.usage_metadata.total_token_count}")
```
Node.js Example:
```typescript
import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY!);
const fileManager = new GoogleAIFileManager(process.env.GEMINI_API_KEY!);
// Upload audio
const uploadResult = await fileManager.uploadFile("podcast.mp3", {
mimeType: "audio/mp3"
});
// Wait for processing
let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
await new Promise(resolve => setTimeout(resolve, 5000));
file = await fileManager.getFile(uploadResult.file.name);
}
const model = genAI.getGenerativeModel({ model: "gemini-3-pro-preview" });
const result = await model.generateContent([
`Process this audio and provide:
1. Full transcription
2. Summary of main points
3. Key timestamps`,
{ fileData: { fileUri: file.uri, mimeType: file.mimeType } }
]);
console.log(result.response.text());
```
Audio Specs:
- Max Duration: 9.5 hours
- Formats: WAV, MP3, FLAC, AAC, etc.
- Languages: Supports multiple languages
See: references/audio-processing.md for advanced patterns
---
Task 4: Process PDF Documents
Goal: Extract and analyze content from PDF documents.
Use Cases:
- Document analysis
- Information extraction
- Form processing
- Research paper analysis
- Contract review
- Multi-page document understanding
Python Example:
```python
import google.generativeai as genai
from pathlib import Path
genai.configure(api_key="YOUR_API_KEY")
# Configure with medium resolution (recommended for PDFs)
model = genai.GenerativeModel(
"gemini-3-pro-preview",
generation_config={
"thinking_level": "high",
"media_resolution": "medium" # 560 tokens/page (saturation point)
}
)
# Upload PDF
pdf_path = Path("research_paper.pdf")
pdf_file = genai.upload_file(pdf_path)
# Wait for processing
import time
while pdf_file.state.name == "PROCESSING":
time.sleep(5)
pdf_file = genai.get_file(pdf_file.name)
# Analyze PDF
response = model.generate_content([
"""Analyze this PDF document and provide:
1. Document type and purpose
2. Main sections and structure
3. Key findings or arguments
4. Important data or statistics
5. Conclusions or recommendations
""",
pdf_file
])
print(response.text)
print(f"Tokens used: {response.usage_metadata.total_token_count}")
```
Node.js Example:
```typescript
import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY!);
const fileManager = new GoogleAIFileManager(process.env.GEMINI_API_KEY!);
// Upload PDF
const uploadResult = await fileManager.uploadFile("research_paper.pdf", {
mimeType: "application/pdf"
});
// Wait for processing
let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
await new Promise(resolve => setTimeout(resolve, 5000));
file = await fileManager.getFile(uploadResult.file.name);
}
// Analyze with medium resolution (recommended)
const model = genAI.getGenerativeModel({
model: "gemini-3-pro-preview",
generationConfig: {
media_resolution: "medium"
}
});
const result = await model.generateContent([
`Analyze this PDF and extract:
1. Main sections
2. Key findings
3. Important data`,
{ fileData: { fileUri: file.uri, mimeType: file.mimeType } }
]);
console.log(result.response.text());
```
PDF Processing Tips:
- Recommended Resolution:
medium(560 tokens/page) - saturation point for quality - Multi-page: Automatically processes all pages
- Native Support: No conversion to images needed
- Text Extraction: High-quality text extraction built-in
See: references/document-processing.md for advanced patterns
---
Task 5: Optimize Media Processing Costs
Goal: Balance quality and token consumption based on use case.
Strategy:
| Media Type | Resolution | Tokens | Use Case |
|-----------|-----------|---------|----------|
| Images | low | 280 | Quick scan, thumbnails |
| Images | medium | 560 | General analysis |
| Images | high | 1,120 | OCR, fine details, code |
| PDFs | medium | 560/page | Recommended (saturation point) |
| PDFs | high | 1,120/page | Diminishing returns |
| Video | low/medium | 70/frame | Most use cases |
| Video | high | 280/frame | OCR from video |
Python Optimization Example:
```python
import google.generativeai as genai
genai.configure(api_key="YOUR_API_KEY")
# Different resolutions for different use cases
def analyze_image_optimized(image_path, need_ocr=False):
"""Analyze image with appropriate resolution"""
resolution = "high" if need_ocr else "medium"
model = genai.GenerativeModel(
"gemini-3-pro-preview",
generation_config={
"media_resolution": resolution
}
)
image_file = genai.upload_file(image_path)
response = model.generate_content([
"Describe this image" if not need_ocr else "Extract all text from this image",
image_file
])
# Log token usage for cost tracking
tokens = response.usage_metadata.total_token_count
cost = (tokens / 1_000_000) * 2.00 # Input pricing
print(f"Resolution: {resolution}, Tokens: {tokens}, Cost: ${cost:.6f}")
return response.text
# Use appropriate resolution
analyze_image_optimized("photo.jpg", need_ocr=False) # medium
analyze_image_optimized("document.png", need_ocr=True) # high
```
Per-Item Resolution Control:
```python
# Set different resolutions for different media in same request
response = model.generate_content([
"Compare these images",
{"file": image1, "media_resolution": "high"}, # High detail
{"file": image2, "media_resolution": "low"}, # Low detail OK
])
```
Cost Monitoring:
```python
def log_media_costs(response):
"""Log media processing costs"""
usage = response.usage_metadata
# Pricing for β€200k context
input_cost = (usage.prompt_token_count / 1_000_000) * 2.00
output_cost = (usage.candidates_token_count / 1_000_000) * 12.00
print(f"Input tokens: {usage.prompt_token_count} (${input_cost:.6f})")
print(f"Output tokens: {usage.candidates_token_count} (${output_cost:.6f})")
print(f"Total cost: ${input_cost + output_cost:.6f}")
```
See: references/token-optimization.md for comprehensive strategies
---
Media Resolution Control
Resolution Options
| Setting | Images | PDFs | Video (per frame) | Recommendation |
|---------|--------|------|-------------------|----------------|
| low | 280 tokens | 280 tokens | 70 tokens | Quick analysis, low detail |
| medium | 560 tokens | 560 tokens | 70 tokens | Balanced quality/cost |
| high | 1,120 tokens | 1,120 tokens | 280 tokens | OCR, fine text, details |
Configuration
Global Setting (all media):
```python
model = genai.GenerativeModel(
"gemini-3-pro-preview",
generation_config={
"media_resolution": "high" # Applies to all media
}
)
```
Per-Item Setting (mixed resolutions):
```python
response = model.generate_content([
"Analyze these files",
{"file": high_detail_image, "media_resolution": "high"},
{"file": low_detail_image, "media_resolution": "low"}
])
```
Best Practices
- Images: Use
highfor OCR/text extraction,mediumfor general analysis - PDFs: Use
medium(saturation point - higher resolutions show diminishing returns) - Video: Use
lowormediumunless OCR needed - Cost Control: Start with
low, increase only if quality insufficient
See: references/media-resolution.md for detailed guide
---
File Management
Upload Files
```python
import google.generativeai as genai
# Upload file
file = genai.upload_file("path/to/file.jpg")
print(f"Uploaded: {file.name}")
# Check processing status
while file.state.name == "PROCESSING":
time.sleep(5)
file = genai.get_file(file.name)
print(f"Status: {file.state.name}")
```
List Uploaded Files
```python
# List all files
for file in genai.list_files():
print(f"{file.name} - {file.display_name}")
```
Delete Files
```python
# Delete specific file
genai.delete_file(file.name)
# Delete all files
for file in genai.list_files():
genai.delete_file(file.name)
print(f"Deleted: {file.name}")
```
File Lifecycle
- Upload: Immediate
- Processing: Async (especially for video/audio)
- Storage: Files persist until deleted
- Expiration: Files may expire after period (check docs)
---
Multi-File Processing
Process Multiple Images
```python
# Upload multiple images
images = [
genai.upload_file("photo1.jpg"),
genai.upload_file("photo2.jpg"),
genai.upload_file("photo3.jpg")
]
# Analyze together
response = model.generate_content([
"Compare these images and identify common elements",
*images
])
print(response.text)
```
Mixed Media Types
```python
# Combine different media types
image = genai.upload_file("chart.png")
pdf = genai.upload_file("report.pdf")
response = model.generate_content([
"Does the chart match the data in the report?",
image,
])
```
---
References
Core Guides
- [Image Understanding](references/image-understanding.md) - Complete image analysis patterns
- [Video Processing](references/video-processing.md) - Video analysis and frame extraction
- [Audio Processing](references/audio-processing.md) - Audio transcription and analysis
- [Document Processing](references/document-processing.md) - PDF and document extraction
Optimization
- [Media Resolution](references/media-resolution.md) - Resolution control and quality tuning
- [OCR Extraction](references/ocr-extraction.md) - Text extraction best practices
- [Token Optimization](references/token-optimization.md) - Cost control and efficiency
Scripts
- [Analyze Image Script](scripts/analyze-image.py) - Production-ready image analysis
- [Process Video Script](scripts/process-video.py) - Video processing automation
- [Process Audio Script](scripts/process-audio.py) - Audio transcription
- [Process PDF Script](scripts/process-pdf.py) - PDF extraction
Official Resources
- [Vision Capabilities](https://ai.google.dev/gemini-api/docs/vision)
- [Prompting with Media](https://ai.google.dev/gemini-api/docs/prompting_with_media)
- [File API](https://ai.google.dev/gemini-api/docs/file-api)
---
Related Skills
- gemini-3-pro-api - Basic setup, authentication, text generation
- gemini-3-image-generation - Image OUTPUT (generating images)
- gemini-3-advanced - Function calling, tools, caching, batch processing
---
Common Use Cases
Visual Q&A Application
Combine image understanding with chat:
```python
model = genai.GenerativeModel("gemini-3-pro-preview")
chat = model.start_chat()
# Upload image
image = genai.upload_file("product.jpg")
# Ask questions about it
response1 = chat.send_message(["What product is this?", image])
response2 = chat.send_message("What are its main features?")
response3 = chat.send_message("What's the price range for similar products?")
```
Document Analysis Pipeline
Process multiple PDFs and extract insights:
```python
import google.generativeai as genai
from pathlib import Path
genai.configure(api_key="YOUR_API_KEY")
model = genai.GenerativeModel(
"gemini-3-pro-preview",
generation_config={"media_resolution": "medium"}
)
# Process all PDFs in directory
pdf_dir = Path("documents/")
results = {}
for pdf_path in pdf_dir.glob("*.pdf"):
pdf_file = genai.upload_file(pdf_path)
# Wait for processing
while pdf_file.state.name == "PROCESSING":
time.sleep(5)
pdf_file = genai.get_file(pdf_file.name)
# Extract key information
response = model.generate_content([
"Extract: 1) Document type, 2) Key dates, 3) Important numbers, 4) Summary",
pdf_file
])
results[pdf_path.name] = response.text
# Clean up
genai.delete_file(pdf_file.name)
# Save results
import json
with open("analysis_results.json", "w") as f:
json.dump(results, f, indent=2)
```
Video Content Moderation
Analyze video for specific content:
```python
video = genai.upload_file("user_upload.mp4")
# Wait for processing
while video.state.name == "PROCESSING":
time.sleep(10)
video = genai.get_file(video.name)
response = model.generate_content([
"""Analyze this video for:
1. Inappropriate content (yes/no)
2. Violence or harmful content (yes/no)
3. Overall content rating (G/PG/PG-13/R)
4. Brief justification
Provide structured response.
""",
video
])
print(response.text)
```
---
Troubleshooting
Issue: File processing stuck at "PROCESSING"
Solution: Large files (especially video) can take time. Wait 30-60 seconds between checks. If stuck > 5 minutes, file may have failed.
Issue: Low quality OCR results
Solution: Use media_resolution: "high" for images with text. Ensure image is clear and high resolution.
Issue: High token costs
Solution: Use appropriate media resolution. Start with low, increase only if needed. For PDFs, medium is usually sufficient.
Issue: Video analysis missing details
Solution: Use media_resolution: "high" for better frame analysis, or provide more specific prompts about what to look for.
Issue: Audio transcription inaccurate
Solution: Ensure audio quality is good (no excessive background noise). Provide context in prompt about accent, language, or domain.
---
Summary
This skill provides comprehensive multimodal input processing capabilities:
β Image analysis with OCR and object detection
β Video processing up to 1 hour
β Audio transcription up to 9.5 hours
β Native PDF document processing
β Granular media resolution control
β Token optimization strategies
β Multi-file processing
β Production-ready examples
Ready to analyze multimodal content? Start with the task that matches your use case above!
More from this repository10
xai-stock-sentiment skill from adaptationio/skrillz
Generates Ralph-compatible prompts for single implementation tasks with clear completion criteria and automatic verification.
Orchestrates continuous autonomous coding sessions, managing feature implementation, testing, and progress tracking with intelligent checkpointing and recovery mechanisms.
auto-claude-troubleshooting skill from adaptationio/skrillz
auto-claude-setup skill from adaptationio/skrillz
Analyzes Claude Code observability data to generate insights on performance, costs, errors, tool usage, sessions, conversations, and subagents through advanced metrics and log querying.
xai-financial-integration skill from adaptationio/skrillz
xai-agent-tools skill from adaptationio/skrillz
xai-crypto-sentiment skill from adaptationio/skrillz
auto-claude-memory skill from adaptationio/skrillz