🎯

xai-agent-tools

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

Enables autonomous agents to search X, web, execute code, and analyze documents with server-side tool management.

xai-agent-tools

Installation

Install skill:
npx skills add https://github.com/adaptationio/skrillz --skill xai-agent-tools
3
AddedJan 27, 2026

Skill Details

SKILL.md

xAI Agent Tools API for autonomous tool calling with X search, web search, and code execution. Use when building agents that need real-time data access and autonomous task execution.

Overview

# xAI Agent Tools API

Server-side agentic tool calling that enables Grok to autonomously search, analyze, and execute code.

Overview

The Agent Tools API manages the entire reasoning and tool-execution loop on the server side, unlike traditional tool-calling where clients must handle each invocation.

Available Tools:

  • x_search - Search Twitter/X posts
  • web_search - Real-time web search
  • code_execution - Python sandbox
  • document_search - Search uploaded documents

Quick Start

```python

import os

from openai import OpenAI

client = OpenAI(

api_key=os.getenv("XAI_API_KEY"),

base_url="https://api.x.ai/v1"

)

# Agent with automatic tool use

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": "Search X for Tesla news, then search the web for Tesla stock price, and calculate the sentiment score"

}]

)

print(response.choices[0].message.content)

```

Tool Configurations

X Search Tool

```python

x_search_config = {

"type": "x_search",

"x_search": {

"enabled": True,

"allowed_x_handles": ["elonmusk", "Tesla"], # Max 10

"excluded_x_handles": [], # Cannot use with allowed

"date_range": {

"start": "2025-12-01", # ISO8601

"end": "2025-12-05"

},

"include_media": True # Analyze images/videos

}

}

```

Web Search Tool

```python

web_search_config = {

"type": "web_search",

"web_search": {

"enabled": True,

"search_depth": "comprehensive", # or "quick"

"include_domains": ["reuters.com", "bloomberg.com"],

"exclude_domains": ["spam.com"]

}

}

```

Code Execution Tool

```python

code_execution_config = {

"type": "code_execution",

"code_execution": {

"enabled": True,

"language": "python",

"timeout": 30 # seconds

}

}

```

Agent Patterns

Research Agent

```python

def research_agent(query: str) -> str:

"""Agent that searches both X and web for comprehensive research."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""You are a research agent. For the query: "{query}"

1. Search X for real-time social discussion

2. Search the web for news and analysis

3. Synthesize findings into a comprehensive report

Include:

- Key findings from X

- Key findings from web

- Sentiment analysis

- Recommendations"""

}]

)

return response.choices[0].message.content

```

Analysis Agent

```python

def analysis_agent(data: str, analysis_type: str) -> str:

"""Agent that uses code execution for analysis."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""Analyze this data using Python:

Data: {data}

Analysis type: {analysis_type}

Use code execution to:

1. Parse the data

2. Perform statistical analysis

3. Generate insights

4. Create visualizations if helpful

Return the analysis results."""

}]

)

return response.choices[0].message.content

```

Financial Agent

```python

def financial_agent(ticker: str) -> str:

"""Comprehensive financial analysis agent."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""You are a financial analyst agent. Analyze ${ticker}:

1. Search X for:

- Retail sentiment

- Influencer opinions

- Breaking news

2. Search web for:

- Recent news articles

- Analyst ratings

- Earnings reports

3. Use code execution to:

- Calculate sentiment score

- Analyze mention velocity

- Generate summary statistics

Return a comprehensive investment report with:

- Overall sentiment

- Key catalysts

- Risk factors

- Trading recommendation"""

}]

)

return response.choices[0].message.content

```

Multi-Step Agent

```python

def multi_step_agent(objective: str) -> str:

"""Agent that breaks down and executes complex tasks."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""Objective: {objective}

You have access to:

- X search (real-time social data)

- Web search (news and information)

- Code execution (Python analysis)

Process:

1. Break down the objective into steps

2. Execute each step using appropriate tools

3. Synthesize results

4. Provide actionable insights

Think step by step and use tools as needed."""

}]

)

return response.choices[0].message.content

```

Tool Cost Management

| Tool | Cost per 1,000 calls |

|------|---------------------|

| X Search | $5.00 |

| Web Search | $5.00 |

| Code Execution | $5.00 |

| Document Search | $2.50 |

Cost-Optimized Agent

```python

def cost_optimized_agent(query: str, max_tool_calls: int = 3) -> str:

"""Agent with tool call limits for cost control."""

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{

"role": "user",

"content": f"""Query: {query}

IMPORTANT: Minimize tool usage. You have a budget of {max_tool_calls} tool calls.

- Only use tools when essential

- Combine related searches

- Prefer single comprehensive searches

Provide the best answer within this constraint."""

}]

)

return response.choices[0].message.content

```

Error Handling

```python

def robust_agent(query: str) -> dict:

"""Agent with comprehensive error handling."""

try:

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{"role": "user", "content": query}],

timeout=60

)

return {

"success": True,

"result": response.choices[0].message.content,

"usage": {

"prompt_tokens": response.usage.prompt_tokens,

"completion_tokens": response.usage.completion_tokens

}

}

except Exception as e:

return {

"success": False,

"error": str(e),

"error_type": type(e).__name__

}

```

Streaming Responses

```python

def streaming_agent(query: str):

"""Agent with streaming output."""

stream = client.chat.completions.create(

model="grok-4-1-fast",

messages=[{"role": "user", "content": query}],

stream=True

)

for chunk in stream:

if chunk.choices[0].delta.content:

print(chunk.choices[0].delta.content, end="", flush=True)

```

Conversation Context

```python

class ConversationalAgent:

"""Agent that maintains conversation history."""

def __init__(self):

self.messages = []

def add_system_prompt(self, prompt: str):

self.messages.append({"role": "system", "content": prompt})

def chat(self, user_message: str) -> str:

self.messages.append({"role": "user", "content": user_message})

response = client.chat.completions.create(

model="grok-4-1-fast",

messages=self.messages

)

assistant_message = response.choices[0].message.content

self.messages.append({"role": "assistant", "content": assistant_message})

return assistant_message

# Usage

agent = ConversationalAgent()

agent.add_system_prompt("You are a financial analyst with access to X and web search.")

print(agent.chat("What's the sentiment on AAPL?"))

print(agent.chat("Compare that to MSFT"))

```

Best Practices

  1. Use grok-4-1-fast - Optimized for tool calling
  2. Be specific - Clear instructions reduce unnecessary tool calls
  3. Set limits - Control costs with tool call budgets
  4. Handle errors - Tools can fail, plan for it
  5. Stream for UX - Use streaming for long responses
  6. Cache results - Don't repeat identical searches

Model Selection for Agents

| Model | Tool Calling | Speed | Cost |

|-------|--------------|-------|------|

| grok-4-1-fast | ⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐ |

| grok-4 | ⭐⭐ | ⭐ | ⭐ |

| grok-3-fast | ⭐ | ⭐⭐⭐ | ⭐⭐⭐ |

Related Skills

  • xai-x-search - X search details
  • xai-sentiment - Sentiment analysis
  • xai-stock-sentiment - Stock analysis

References

  • [Agent Tools API](https://x.ai/news/grok-4-1-fast/)
  • [Tools Overview](https://docs.x.ai/docs/guides/tools/overview)
  • [Function Calling](https://docs.x.ai/docs/guides/function-calling)

More from this repository10

🎯
analysis🎯Skill

Performs comprehensive analysis of code, skills, processes, and data to extract actionable insights, identify patterns, and drive data-driven improvements.

🎯
auto-claude-setup🎯Skill

Automates comprehensive installation and setup of Auto-Claude across Windows, macOS, Linux, and WSL with multi-platform support and dependency management.

🎯
auto-claude-optimization🎯Skill

Optimizes Claude AI performance by reducing token usage, managing API costs, and improving build speed through intelligent model and context selection.

🎯
xai-crypto-sentiment🎯Skill

xai-crypto-sentiment skill from adaptationio/skrillz

🎯
twelvedata-api🎯Skill

Retrieves comprehensive financial market data including stocks, forex, crypto, and technical indicators using the Twelve Data API.

🎯
auto-claude-troubleshooting🎯Skill

Automatically diagnoses and resolves Auto-Claude installation, configuration, and runtime issues across different platforms and environments.

🎯
xai-x-search🎯Skill

Enables real-time Twitter/X searches using Grok API to extract insights, track trends, monitor accounts, and analyze social discussions.

🎯
xai-auth🎯Skill

Authenticates and configures xAI Grok API access using Twitter/X account credentials, enabling seamless integration with OpenAI-compatible SDK methods.

🎯
xai-financial-integration🎯Skill

Retrieve and integrate xAI Grok sentiment with financial data APIs to generate comprehensive market insights and analysis.

🎯
auto-claude-memory🎯Skill

Enables persistent, cross-session memory with semantic search using a graph-based knowledge system across multiple AI providers.