bedrock-agentcore-memory
π―Skillfrom adaptationio/skrillz
Enables AI agents to persistently learn and remember user interactions, preferences, and context across multiple sessions using episodic and short-term memory techniques.
Installation
npx skills add https://github.com/adaptationio/skrillz --skill bedrock-agentcore-memorySkill Details
Amazon Bedrock AgentCore Memory for persistent agent knowledge across sessions. Episodic memory for learning from interactions, short-term for session context. Use when building agents that remember user preferences, learn from conversations, or maintain context across sessions.
Overview
# Amazon Bedrock AgentCore Memory
Overview
AgentCore Memory enables agents to maintain persistent knowledge across sessions, learning from user interactions to provide increasingly personalized experiences. It combines short-term session context with long-term episodic memory extracted through background reflection processes.
Purpose: Give agents persistent memory and learning capabilities
Pattern: Capabilities-based (2 memory types)
Key Principles (validated by AWS December 2025):
- Episodic Memory - Long-term facts extracted from conversations
- Short-term Memory - Raw turn-by-turn session context
- Automatic Extraction - Background reflection creates episodes
- Semantic Retrieval - Context-aware memory lookup
- User-Scoped - Memory isolated per user/actor
- Privacy Controls - Granular memory management
Quality Targets:
- Memory retrieval latency: < 100ms
- Extraction accuracy: β₯ 85%
- Storage efficiency: Deduplicated facts
---
When to Use
Use bedrock-agentcore-memory when:
- Building agents that remember user preferences
- Creating personalized experiences across sessions
- Implementing learning from past interactions
- Maintaining context for long-running workflows
- Building agents that improve over time
When NOT to Use:
- Simple stateless Q&A (no persistence needed)
- Short single-session interactions
- When user data cannot be stored (compliance)
---
Prerequisites
Required
- AgentCore agent deployed
- Memory resource created
- IAM permissions for memory operations
Recommended
- User/actor identification strategy
- Data retention policies defined
- Privacy requirements documented
---
Memory Architecture
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Agent Runtime β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β Session 1 Session 2 Session N β
β βββββββββββ βββββββββββ βββββββββββ β
β βShort- β βShort- β βShort- β β
β βterm β βterm β βterm β β
β βMemory β βMemory β βMemory β β
β ββββββ¬βββββ ββββββ¬βββββ ββββββ¬βββββ β
β β β β β
β ββββββββββββββββββββΌβββββββββββββββββββ β
β βΌ β
β βββββββββββββββββββββββββ β
β β Reflection Engine β β
β β (Background Process) β β
β βββββββββββββ¬ββββββββββββ β
β βΌ β
β βββββββββββββββββββββββββ β
β β Episodic Memory β β
β β (Long-term Storage) β β
β β β β
β β β’ User prefers X β β
β β β’ Learned fact Y β β
β β β’ Historical event Z β β
β βββββββββββββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
---
Operations
Operation 1: Create Memory Resource
Time: 2-5 minutes
Automation: 95%
Purpose: Initialize memory storage for an agent
Create Memory:
```python
import boto3
control = boto3.client('bedrock-agentcore-control')
# Create memory resource
response = control.create_memory(
name='customer-service-memory',
description='Long-term memory for customer service agent',
memoryConfiguration={
'episodicMemoryConfig': {
'enabled': True,
'reflectionConfig': {
'reflectionInterval': 'SESSION_END', # or 'PERIODIC'
'extractionModel': 'anthropic.claude-3-sonnet-20240229-v1:0'
}
},
'shortTermMemoryConfig': {
'enabled': True,
'maxTurns': 50, # Keep last 50 turns in session
'contextWindowStrategy': 'SLIDING'
}
},
retentionConfig={
'episodicRetentionDays': 365, # Keep episodic memory 1 year
'shortTermRetentionDays': 7 # Clear short-term after 7 days
}
)
memory_id = response['memory']['memoryId']
print(f"Created memory: {memory_id}")
# Wait for memory to be ready
waiter = control.get_waiter('MemoryCreated')
waiter.wait(memoryId=memory_id)
```
Configure Memory Strategies:
```python
# Different memory configurations for different use cases
# Travel agent - remember preferences long-term
travel_memory = control.create_memory(
name='travel-agent-memory',
memoryConfiguration={
'episodicMemoryConfig': {
'enabled': True,
'reflectionConfig': {
'reflectionInterval': 'SESSION_END',
'extractionInstructions': '''
Extract and remember:
- Preferred airlines and seat types
- Hotel preferences (chain, room type)
- Dietary restrictions
- Travel companion information
- Budget preferences
'''
}
}
}
)
# Support agent - focus on issue history
support_memory = control.create_memory(
name='support-agent-memory',
memoryConfiguration={
'episodicMemoryConfig': {
'enabled': True,
'reflectionConfig': {
'reflectionInterval': 'PERIODIC',
'periodicIntervalMinutes': 30,
'extractionInstructions': '''
Extract and remember:
- Technical issues encountered
- Solutions that worked
- Customer's technical level
- Products owned
'''
}
}
}
)
```
---
Operation 2: Store Memory Events
Time: Real-time
Automation: 100%
Purpose: Feed interaction data for memory extraction
Store Interaction Events:
```python
import boto3
import datetime
import uuid
client = boto3.client('bedrock-agentcore')
# Store user message event
response = client.create_event(
memoryId='memory-xxx',
actorId='user-12345', # User identifier
sessionId='session-abc123',
event={
'eventTime': datetime.datetime.now(datetime.timezone.utc).isoformat(),
'traceId': str(uuid.uuid4()),
'userMessage': {
'content': 'I only fly aisle seats because of my long legs.'
}
}
)
# Store agent response event
client.create_event(
memoryId='memory-xxx',
actorId='user-12345',
sessionId='session-abc123',
event={
'eventTime': datetime.datetime.now(datetime.timezone.utc).isoformat(),
'traceId': str(uuid.uuid4()),
'assistantMessage': {
'content': 'I\'ve noted your preference for aisle seats. I\'ll make sure to prioritize those when searching for flights.'
}
}
)
# Store tool call event
client.create_event(
memoryId='memory-xxx',
actorId='user-12345',
sessionId='session-abc123',
event={
'eventTime': datetime.datetime.now(datetime.timezone.utc).isoformat(),
'traceId': str(uuid.uuid4()),
'toolCall': {
'toolName': 'SearchFlights',
'toolInput': {
'origin': 'SFO',
'destination': 'JFK',
'seatPreference': 'aisle'
},
'toolOutput': {
'flights': [...]
}
}
}
)
```
Batch Event Storage:
```python
# Store multiple events efficiently
events = [
{
'eventTime': timestamp1,
'userMessage': {'content': 'Book me a hotel in NYC'}
},
{
'eventTime': timestamp2,
'toolCall': {'toolName': 'SearchHotels', 'toolInput': {...}}
},
{
'eventTime': timestamp3,
'assistantMessage': {'content': 'I found several options...'}
}
]
# Note: Batch API may be available - check latest docs
for event in events:
client.create_event(
memoryId=memory_id,
actorId='user-12345',
sessionId=session_id,
event={
'traceId': str(uuid.uuid4()),
**event
}
)
```
---
Operation 3: Retrieve Memories
Time: < 100ms
Automation: 100%
Purpose: Get relevant memories for current context
Retrieve by Semantic Query:
```python
# Retrieve memories relevant to current conversation
response = client.retrieve_memory_records(
memoryId='memory-xxx',
actorId='user-12345',
retrievalQuery={
'semanticQuery': 'flight preferences and seating',
'maxRecords': 10
}
)
memories = response['memoryRecords']
for memory in memories:
print(f"Memory: {memory['content']}")
print(f"Created: {memory['createdAt']}")
print(f"Relevance: {memory.get('relevanceScore', 'N/A')}")
print("---")
# Example output:
# Memory: User prefers aisle seats due to legroom requirements
# Created: 2025-11-15T10:30:00Z
# Relevance: 0.95
```
Retrieve All Memories for User:
```python
# List all episodic memories for a user
memories = []
paginator = client.get_paginator('list_memory_records')
for page in paginator.paginate(
memoryId='memory-xxx',
actorId='user-12345'
):
memories.extend(page['memoryRecords'])
print(f"Total memories for user: {len(memories)}")
# Categorize memories
preferences = [m for m in memories if 'preference' in m['content'].lower()]
history = [m for m in memories if 'booked' in m['content'].lower()]
```
Context-Aware Retrieval:
```python
def get_relevant_memories(memory_id, user_id, current_context):
"""Retrieve memories relevant to current conversation context"""
# Extract key topics from current context
topics = extract_topics(current_context)
# Retrieve for each topic
all_memories = []
for topic in topics:
response = client.retrieve_memory_records(
memoryId=memory_id,
actorId=user_id,
retrievalQuery={
'semanticQuery': topic,
'maxRecords': 5
}
)
all_memories.extend(response['memoryRecords'])
# Deduplicate and rank
unique_memories = deduplicate(all_memories)
return sorted(unique_memories, key=lambda m: m.get('relevanceScore', 0), reverse=True)[:10]
```
---
Operation 4: Manual Memory Management
Time: 1-5 minutes
Automation: 80%
Purpose: Create, update, or delete specific memories
Create Manual Memory Record:
```python
# Manually create a memory (not from reflection)
response = client.batch_create_memory_records(
memoryId='memory-xxx',
actorId='user-12345',
memoryRecords=[
{
'content': 'User is a premium member since 2023',
'metadata': {
'source': 'CRM_IMPORT',
'confidence': 1.0,
'category': 'MEMBERSHIP'
}
},
{
'content': 'User has nut allergy - critical dietary restriction',
'metadata': {
'source': 'MANUAL_ENTRY',
'confidence': 1.0,
'category': 'DIETARY',
'priority': 'HIGH'
}
}
]
)
```
Update Memory Record:
```python
# Update existing memory
client.batch_update_memory_records(
memoryId='memory-xxx',
actorId='user-12345',
updates=[
{
'memoryRecordId': 'record-123',
'content': 'User prefers window seats (changed from aisle)',
'metadata': {
'lastUpdated': datetime.datetime.now().isoformat(),
'updateReason': 'User explicitly changed preference'
}
}
]
)
```
Delete Memory Records:
```python
# Delete specific memory
client.delete_memory_record(
memoryId='memory-xxx',
memoryRecordId='record-123'
)
# Batch delete
client.batch_delete_memory_records(
memoryId='memory-xxx',
actorId='user-12345',
memoryRecordIds=['record-1', 'record-2', 'record-3']
)
# Delete all memories for a user (GDPR right to be forgotten)
all_records = list_all_user_memories(memory_id, 'user-12345')
client.batch_delete_memory_records(
memoryId='memory-xxx',
actorId='user-12345',
memoryRecordIds=[r['memoryRecordId'] for r in all_records]
)
```
---
Operation 5: Memory Extraction Jobs
Time: 5-30 minutes (background)
Automation: 100%
Purpose: Trigger and monitor episodic memory extraction
Start Manual Extraction:
```python
# Manually trigger reflection/extraction
response = client.start_memory_extraction_job(
memoryId='memory-xxx',
extractionConfig={
'actorIds': ['user-12345', 'user-67890'], # Specific users
'sessionFilter': {
'startTime': '2025-12-01T00:00:00Z',
'endTime': '2025-12-05T23:59:59Z'
}
}
)
job_id = response['extractionJobId']
# Monitor job
while True:
status = client.list_memory_extraction_jobs(
memoryId='memory-xxx'
)
job = next(j for j in status['jobs'] if j['jobId'] == job_id)
if job['status'] == 'COMPLETED':
print(f"Extracted {job['recordsCreated']} new memories")
break
elif job['status'] == 'FAILED':
print(f"Extraction failed: {job['error']}")
break
time.sleep(30)
```
Custom Extraction Instructions:
```python
# Update memory with custom extraction instructions
control.update_memory(
memoryId='memory-xxx',
memoryConfiguration={
'episodicMemoryConfig': {
'reflectionConfig': {
'extractionInstructions': '''
From each conversation, extract and remember:
1. USER PREFERENCES (high priority):
- Product preferences
- Communication style preferences
- Time/schedule preferences
2. IMPORTANT FACTS (high priority):
- Allergies or restrictions
- Account/membership status
- Key dates (birthdays, anniversaries)
3. INTERACTION HISTORY (medium priority):
- Products purchased
- Issues resolved
- Feedback given
4. CONTEXT HINTS (low priority):
- Mentioned family members
- Hobbies or interests
- Location information
DO NOT extract:
- Temporary session-specific details
- Sensitive financial information
- Health information beyond allergies
'''
}
}
}
)
```
---
Integration with Agent
Memory-Aware Agent Pattern:
```python
from bedrock_agentcore import BedrockAgentCoreApp
from strands import Agent
app = BedrockAgentCoreApp()
memory_client = boto3.client('bedrock-agentcore')
MEMORY_ID = 'memory-xxx'
@app.entrypoint
def invoke(payload):
user_id = payload.get('user_id')
user_message = payload.get('prompt')
session_id = payload.get('session_id', str(uuid.uuid4()))
# 1. Retrieve relevant memories
memories = get_relevant_memories(user_id, user_message)
memory_context = format_memories_for_context(memories)
# 2. Build enhanced prompt with memories
enhanced_prompt = f"""
You are a helpful assistant with knowledge about this user.
USER HISTORY AND PREFERENCES:
{memory_context}
CURRENT REQUEST:
{user_message}
Respond helpfully, incorporating relevant knowledge about the user.
"""
# 3. Run agent
agent = Agent(model="anthropic.claude-sonnet-4-20250514-v1:0")
result = agent(enhanced_prompt)
# 4. Store interaction for future learning
store_interaction(user_id, session_id, user_message, result.message)
return {"response": result.message}
def get_relevant_memories(user_id, query):
"""Retrieve relevant memories for context"""
try:
response = memory_client.retrieve_memory_records(
memoryId=MEMORY_ID,
actorId=user_id,
retrievalQuery={
'semanticQuery': query,
'maxRecords': 5
}
)
return response['memoryRecords']
except Exception:
return []
def format_memories_for_context(memories):
"""Format memories as context string"""
if not memories:
return "No prior interaction history available."
lines = []
for m in memories:
lines.append(f"- {m['content']}")
return "\n".join(lines)
def store_interaction(user_id, session_id, user_msg, assistant_msg):
"""Store interaction for memory extraction"""
memory_client.create_event(
memoryId=MEMORY_ID,
actorId=user_id,
sessionId=session_id,
event={
'eventTime': datetime.datetime.now(datetime.timezone.utc).isoformat(),
'traceId': str(uuid.uuid4()),
'userMessage': {'content': user_msg}
}
)
memory_client.create_event(
memoryId=MEMORY_ID,
actorId=user_id,
sessionId=session_id,
event={
'eventTime': datetime.datetime.now(datetime.timezone.utc).isoformat(),
'traceId': str(uuid.uuid4()),
'assistantMessage': {'content': assistant_msg}
}
)
```
---
Best Practices
1. User Identification
```python
# Use consistent, stable user IDs
# Good: Database user ID, OAuth sub claim
# Bad: Session ID, email (can change)
actor_id = f"user-{user.database_id}" # Good
# actor_id = user.email # Bad - can change
```
2. Privacy-First Design
```python
# Provide memory opt-out
if user.preferences.get('memory_enabled', True):
store_interaction(...)
else:
pass # Don't store
# Support deletion requests (GDPR)
def handle_deletion_request(user_id):
all_records = list_all_memories(user_id)
client.batch_delete_memory_records(
memoryId=MEMORY_ID,
actorId=user_id,
memoryRecordIds=[r['id'] for r in all_records]
)
```
3. Memory Categories
```python
# Use metadata for organization
memory_categories = {
'PREFERENCE': 'User preferences and settings',
'FACT': 'Known facts about user',
'HISTORY': 'Past interactions and events',
'RESTRICTION': 'Constraints (allergies, limits)'
}
# Store with category
client.batch_create_memory_records(
memoryId=MEMORY_ID,
actorId=user_id,
memoryRecords=[{
'content': 'User prefers morning appointments',
'metadata': {
'category': 'PREFERENCE',
'confidence': 0.9
}
}]
)
```
---
Related Skills
- bedrock-agentcore: Core platform setup
- bedrock-agentcore-deployment: Deploying memory-enabled agents
- bedrock-agentcore-policy: Memory access policies
- agent-memory-system: General agent memory patterns
---
References
references/memory-patterns.md- Common memory implementation patternsreferences/privacy-compliance.md- GDPR and privacy requirementsreferences/extraction-tuning.md- Optimizing memory extraction
---
Sources
- [Amazon Bedrock AgentCore Memory](https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/memory-get-started.html)
- [Boto3 BedrockAgentCore](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock-agentcore.html)
More from this repository10
Performs comprehensive analysis of code, skills, processes, and data to extract actionable insights, identify patterns, and drive data-driven improvements.
Automatically diagnoses and resolves Auto-Claude installation, configuration, and runtime issues across different platforms and environments.
Authenticates and configures xAI Grok API access using Twitter/X account credentials, enabling seamless integration with OpenAI-compatible SDK methods.
Retrieve and integrate xAI Grok sentiment with financial data APIs to generate comprehensive market insights and analysis.
xai-crypto-sentiment skill from adaptationio/skrillz
Retrieves comprehensive financial market data including stocks, forex, crypto, and technical indicators using the Twelve Data API.
Enables real-time Twitter/X searches using Grok API to extract insights, track trends, monitor accounts, and analyze social discussions.
Enables autonomous agents to search X, web, execute code, and analyze documents with server-side tool management.
Optimizes Claude AI performance by reducing token usage, managing API costs, and improving build speed through intelligent model and context selection.
Automates comprehensive installation and setup of Auto-Claude across Windows, macOS, Linux, and WSL with multi-platform support and dependency management.