🎯

bedrock-agentcore-policy

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

bedrock-agentcore-policy skill from adaptationio/skrillz

bedrock-agentcore-policy

Installation

Install skill:
npx skills add https://github.com/adaptationio/skrillz --skill bedrock-agentcore-policy
1
AddedJan 27, 2026

Skill Details

SKILL.md

Amazon Bedrock AgentCore Policy for defining agent boundaries using natural language and Cedar. Deterministic policy enforcement at the Gateway level. Use when setting agent guardrails, access control, tool permissions, or compliance rules.

Overview

# Amazon Bedrock AgentCore Policy

Overview

AgentCore Policy provides deterministic enforcement of agent boundaries, separate from the probabilistic nature of prompt engineering. Author policies in natural language that automatically convert to Cedarβ€”AWS's open-source policy languageβ€”for real-time enforcement at the Gateway layer.

Purpose: Define what agents can and cannot do with deterministic, auditable rules

Pattern: Task-based (5 operations)

Key Principles (validated by AWS December 2025):

  1. Natural Language Authoring - Write policies in plain English
  2. Automated Cedar Generation - System converts to valid Cedar
  3. Real-time Enforcement - Gateway intercepts every tool call
  4. Automated Reasoning - Detects overly permissive/restrictive rules
  5. Default Deny - No permit policy = automatic denial
  6. Forbid Wins - Forbid always overrides permit

Quality Targets:

  • Policy generation: < 5 seconds
  • Enforcement latency: < 10ms per tool call
  • Validation coverage: 100% of tool schemas

---

When to Use

Use bedrock-agentcore-policy when:

  • Setting boundaries for what agents can do
  • Implementing role-based access control (RBAC)
  • Enforcing compliance rules (e.g., max refund amounts)
  • Temporarily disabling problematic tools
  • Requiring specific parameters for operations
  • Auditing agent actions

When NOT to Use:

  • Content filtering (use Bedrock Guardrails)
  • Rate limiting (use API Gateway)
  • Business logic (implement in tools)

---

Prerequisites

Required

  • AgentCore Gateway configured
  • Tools registered as Gateway targets
  • IAM permissions for policy operations

Recommended

  • Understanding of Cedar semantics
  • Tool schemas documented
  • Test scenarios defined

---

Operations

Operation 1: Natural Language Policy Authoring

Time: 2-5 minutes

Automation: 95%

Purpose: Create policies from plain English descriptions

Process:

  1. Define requirements in natural language:

```

"Allow all users to read policy details and claim status.

Only allow users with 'senior-adjuster' role to update coverage.

Block all claim filings unless a description is provided."

```

  1. Generate Cedar policy:

```python

import boto3

control = boto3.client('bedrock-agentcore-control')

# Start policy generation from natural language

response = control.start_policy_generation(

gatewayId='gateway-xxx',

naturalLanguagePolicy="""

Allow all users to get policy and get claim status.

Only allow principals with the 'senior-adjuster' role to update coverage.

Block principals from filing claims unless description is provided.

""",

policyName='insurance-agent-policy'

)

generation_id = response['policyGenerationId']

# Wait for completion

waiter = control.get_waiter('PolicyGenerationCompleted')

waiter.wait(policyGenerationId=generation_id)

# Get generated Cedar

result = control.get_policy_generation(

policyGenerationId=generation_id

)

cedar_policy = result['generatedPolicy']

validation_results = result['validationResults']

```

  1. Review generated Cedar:

```cedar

// Permit read-only actions for everyone

permit(

principal,

action in [

AgentCore::Action::"InsuranceAPI__get_policy",

AgentCore::Action::"InsuranceAPI__get_claim_status"

],

resource

);

// Permit updates only for specific roles

permit(

principal,

action == AgentCore::Action::"InsuranceAPI__update_coverage",

resource

)

when {

principal.hasTag("role") &&

principal.getTag("role") == "senior-adjuster"

};

// Block claims without description

forbid(

principal,

action == AgentCore::Action::"InsuranceAPI__file_claim",

resource

)

unless {

context.input has description

};

```

---

Operation 2: Create Policy Directly (Cedar)

Time: 5-10 minutes

Automation: 80%

Purpose: Write Cedar policies with full control

Cedar Syntax:

```cedar

// Basic permit

permit(

principal,

action == AgentCore::Action::"ToolName__method",

resource == AgentCore::Gateway::"arn:..."

);

// With conditions

permit(

principal is AgentCore::OAuthUser,

action == AgentCore::Action::"RefundAPI__process_refund",

resource

)

when {

context.input.amount < 1000

};

// Forbid with unless

forbid(

principal,

action == AgentCore::Action::"DeleteAPI__delete_record",

resource

)

unless {

principal.hasTag("role") &&

principal.getTag("role") == "admin"

};

```

Create policy via boto3:

```python

response = control.create_policy(

name='refund-limit-policy',

description='Limits refunds to under $1000 for non-managers',

policyContent='''

permit(

principal,

action == AgentCore::Action::"RefundToolTarget___refund",

resource == AgentCore::Gateway::"arn:aws:bedrock-agentcore:us-east-1:123456789012:gateway/refund"

)

when {

context.input.amount < 1000

};

permit(

principal,

action == AgentCore::Action::"RefundToolTarget___refund",

resource == AgentCore::Gateway::"arn:aws:bedrock-agentcore:us-east-1:123456789012:gateway/refund"

)

when {

principal.hasTag("role") &&

principal.getTag("role") == "manager"

};

'''

)

policy_id = response['policyId']

```

---

Operation 3: Common Policy Patterns

Time: 5-15 minutes

Automation: 90%

Purpose: Implement standard access control patterns

Pattern 1: Role-Based Access Control (RBAC)

```cedar

// Admin-only actions

permit(

principal,

action in [

AgentCore::Action::"AdminAPI__delete_user",

AgentCore::Action::"AdminAPI__modify_permissions"

],

resource

)

when {

principal.hasTag("role") &&

principal.getTag("role") == "admin"

};

```

Pattern 2: OAuth Scope Validation

```cedar

// Require specific scope

permit(

principal is AgentCore::OAuthUser,

action == AgentCore::Action::"CustomerAPI__read_profile",

resource

)

when {

principal.hasTag("scope") &&

principal.getTag("scope") like "customer:read"

};

```

Pattern 3: Parameter Constraints

```cedar

// Limit by parameter value

permit(

principal,

action == AgentCore::Action::"TransferAPI__transfer_funds",

resource

)

when {

context.input has amount &&

context.input.amount <= 10000

};

```

Pattern 4: Multi-Condition AND Logic

```cedar

// All conditions must be true

permit(

principal,

action == AgentCore::Action::"InsuranceAPI__update_coverage",

resource

)

when {

context.input has coverageType &&

context.input has newLimit &&

(context.input.coverageType == "liability" ||

context.input.coverageType == "collision")

};

```

Pattern 5: Disable Specific Tool

```cedar

// Temporarily disable a tool

forbid(

principal,

action == AgentCore::Action::"ProblematicAPI__buggy_method",

resource

);

```

Pattern 6: User-Specific Permissions

```cedar

// Grant to specific user

permit(

principal,

action == AgentCore::Action::"SpecialAPI__sensitive_action",

resource

)

when {

principal.hasTag("username") &&

principal.getTag("username") == "trusted-user"

};

```

---

Operation 4: Policy Engine Configuration

Time: 5-10 minutes

Automation: 85%

Purpose: Attach policies to Gateway for enforcement

Create Policy Engine:

```python

# Create policy engine to evaluate policies

response = control.create_policy_engine(

name='insurance-policy-engine',

description='Enforces insurance agent boundaries',

gatewayId='gateway-xxx'

)

engine_id = response['policyEngineId']

# Wait for active

waiter = control.get_waiter('PolicyEngineActive')

waiter.wait(policyEngineId=engine_id)

```

Attach Policy to Engine:

```python

# Update policy engine with policies

response = control.update_policy_engine(

policyEngineId=engine_id,

policyIds=[

'policy-read-access',

'policy-role-restrictions',

'policy-refund-limits'

]

)

```

Test Policy Enforcement:

```python

# Invoke agent and observe policy enforcement

client = boto3.client('bedrock-agentcore')

response = client.invoke_agent_runtime(

agentRuntimeArn='arn:...',

runtimeSessionId='test-session',

payload={

'prompt': 'Process a refund of $50000',

'context': {

'user_id': 'regular-user',

'role': 'customer-service' # Not manager

}

}

)

# Policy will block this - amount exceeds $1000 for non-managers

# Agent response will indicate the action was denied

```

---

Operation 5: Policy Validation and Debugging

Time: 5-15 minutes

Automation: 80%

Purpose: Test and troubleshoot policy behavior

Validation Checks:

```python

# Get policy validation results

response = control.get_policy_generation(

policyGenerationId=generation_id

)

for issue in response.get('validationResults', {}).get('issues', []):

print(f"Issue: {issue['type']}")

print(f"Message: {issue['message']}")

print(f"Location: {issue.get('location', 'N/A')}")

# Common issues:

# - Overly permissive (allows more than intended)

# - Overly restrictive (blocks legitimate actions)

# - Unsatisfiable conditions (can never match)

# - Schema mismatch (references non-existent tools)

```

Debug Policy Decisions:

```python

# Enable detailed logging

import logging

logging.getLogger('botocore').setLevel(logging.DEBUG)

# Check CloudWatch for policy decisions

# Log group: /aws/bedrock-agentcore/gateway/{gateway-id}

# Look for: PolicyDecision events

# Example log entry:

# {

# "eventType": "PolicyDecision",

# "action": "InsuranceAPI__file_claim",

# "decision": "DENY",

# "matchedPolicy": "policy-require-description",

# "reason": "Condition not satisfied: context.input has description"

# }

```

Test Scenarios:

```python

def test_policy_scenarios():

"""Test various policy scenarios"""

test_cases = [

{

'name': 'Regular user reads policy',

'action': 'get_policy',

'context': {'role': 'user'},

'expected': 'ALLOW'

},

{

'name': 'Regular user updates coverage',

'action': 'update_coverage',

'context': {'role': 'user'},

'expected': 'DENY'

},

{

'name': 'Senior adjuster updates coverage',

'action': 'update_coverage',

'context': {'role': 'senior-adjuster'},

'expected': 'ALLOW'

},

{

'name': 'Claim without description',

'action': 'file_claim',

'context': {'role': 'user'},

'input': {'amount': 100}, # No description

'expected': 'DENY'

},

{

'name': 'Claim with description',

'action': 'file_claim',

'context': {'role': 'user'},

'input': {'amount': 100, 'description': 'Car accident'},

'expected': 'ALLOW'

}

]

for case in test_cases:

result = simulate_policy(case)

assert result == case['expected'], f"Failed: {case['name']}"

```

---

Cedar Quick Reference

Principal Types

```cedar

principal // Any principal

principal is AgentCore::OAuthUser // OAuth authenticated user

principal is AgentCore::ApiKeyUser // API key authenticated

```

Actions

```cedar

action == AgentCore::Action::"ToolName__method"

action in [Action1, Action2, Action3]

```

Conditions

```cedar

// Tag checks

principal.hasTag("role")

principal.getTag("role") == "admin"

principal.getTag("scope") like "read"

// Context/input checks

context.input has fieldName

context.input.amount < 1000

context.input.type == "premium"

// Logical operators

&& // AND

|| // OR

! // NOT

```

Policy Types

```cedar

permit(...) // Allow if conditions match

permit(...) when {} // Allow with conditions

forbid(...) // Deny unconditionally

forbid(...) unless {} // Deny unless conditions match

```

---

Best Practices

1. Start Permissive, Tighten Gradually

```cedar

// Phase 1: Allow all, log actions

permit(principal, action, resource);

// Phase 2: After analysis, add restrictions

permit(principal, action, resource)

when { / specific conditions / };

```

2. Use Descriptive Policy Names

```python

control.create_policy(

name='refund-limit-1000-non-managers', # Good

# name='policy-1', # Bad

...

)

```

3. Document Business Rules

```cedar

// Business Rule: PCI-DSS compliance requires

// credit card operations to be role-restricted

permit(

principal,

action == AgentCore::Action::"PaymentAPI__process_card",

resource

)

when {

principal.hasTag("role") &&

principal.getTag("role") in ["payment-admin", "finance"]

};

```

4. Layer Policies

```

Policy Stack:

  1. Global deny (default)
  2. Read-only permits (broad)
  3. Write permits (role-specific)
  4. Admin permits (highly restricted)
  5. Emergency forbids (immediate disable)

```

---

MCP Server Integration

AgentCore Policy is available as an MCP server for AI-assisted coding environments:

```json

{

"mcpServers": {

"bedrock-agentcore-policy": {

"command": "uvx",

"args": ["bedrock-agentcore-policy-mcp"],

"env": {

"AWS_REGION": "us-east-1"

}

}

}

}

```

---

Related Skills

  • bedrock-agentcore: Core platform and Gateway setup
  • bedrock-agentcore-evaluations: Test policy effectiveness
  • bedrock-agentcore-deployment: Deploy policies with agents
  • eks-irsa: IAM integration for EKS-hosted agents

---

References

  • references/cedar-syntax.md - Complete Cedar language guide
  • references/policy-patterns.md - Common patterns library
  • references/troubleshooting.md - Policy debugging guide

---

Sources

  • [Amazon Bedrock AgentCore Policy](https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/policy.html)
  • [Example Policies](https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/example-policies.html)
  • [Common Policy Patterns](https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/policy-common-patterns.html)
  • [Cedar Language](https://www.cedarpolicy.com/)

More from this repository10

🎯
analysis🎯Skill

Performs comprehensive analysis of code, skills, processes, and data to extract actionable insights, identify patterns, and drive data-driven improvements.

🎯
auto-claude-troubleshooting🎯Skill

Automatically diagnoses and resolves Auto-Claude installation, configuration, and runtime issues across different platforms and environments.

🎯
xai-auth🎯Skill

Authenticates and configures xAI Grok API access using Twitter/X account credentials, enabling seamless integration with OpenAI-compatible SDK methods.

🎯
xai-financial-integration🎯Skill

Retrieve and integrate xAI Grok sentiment with financial data APIs to generate comprehensive market insights and analysis.

🎯
xai-crypto-sentiment🎯Skill

xai-crypto-sentiment skill from adaptationio/skrillz

🎯
twelvedata-api🎯Skill

Retrieves comprehensive financial market data including stocks, forex, crypto, and technical indicators using the Twelve Data API.

🎯
xai-x-search🎯Skill

Enables real-time Twitter/X searches using Grok API to extract insights, track trends, monitor accounts, and analyze social discussions.

🎯
xai-agent-tools🎯Skill

Enables autonomous agents to search X, web, execute code, and analyze documents with server-side tool management.

🎯
auto-claude-optimization🎯Skill

Optimizes Claude AI performance by reducing token usage, managing API costs, and improving build speed through intelligent model and context selection.

🎯
auto-claude-setup🎯Skill

Automates comprehensive installation and setup of Auto-Claude across Windows, macOS, Linux, and WSL with multi-platform support and dependency management.