🎯

autonomous-development

🎯Skill

from bejranonda/llm-autonomous-agent-plugin-for-claude

VibeIndex|
What it does

Autonomously plans, breaks down, and implements software development projects with incremental milestones, auto-debugging, and continuous quality validation.

πŸ“¦

Part of

bejranonda/llm-autonomous-agent-plugin-for-claude(25 items)

autonomous-development

Installation

PythonRun Python server
python lib/web_page_validator.py http://localhost:3000 --screenshot
PythonRun Python server
python lib/web_page_validator.py http://localhost:3000/dashboard \
PythonRun Python server
python lib/web_page_validator.py http://localhost:3000 --viewport all --screenshot
Install PluginInstall plugin from marketplace
/plugin install https://github.com/bejranonda/LLM-Autonomous-Agent-Plugin-for-Claude
Claude CodeAdd plugin in Claude Code
/plugin list

+ 2 more commands

πŸ“– Extracted from docs: bejranonda/llm-autonomous-agent-plugin-for-claude
2Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Comprehensive autonomous development strategies including milestone planning, incremental implementation, auto-debugging, and continuous quality assurance for full development lifecycle management

Overview

The Autonomous Development skill provides comprehensive strategies, patterns, and best practices for managing full development lifecycles autonomously - from user requirements to production-ready implementation with minimal human intervention.

When to Apply

Use Autonomous Development strategies when:

  • Implementing features from high-level requirements
  • Managing complex multi-phase development projects
  • Need to maintain quality while developing autonomously
  • Implementing with continuous testing and validation
  • Debugging and fixing issues automatically
  • Ensuring parameter consistency and type safety

Milestone Planning Strategies

Requirements Decomposition

Pattern: Feature-to-Milestone Mapping

```

User Requirement β†’ Feature Breakdown β†’ Milestone Plan

Example: "Add MQTT broker with certificate support"

Decomposition:

  1. Dependencies & Configuration (Simple)

- Install required libraries

- Create configuration module

- Time: 10-15 minutes

  1. Core Functionality (Medium)

- Implement main feature logic

- Add error handling

- Time: 20-30 minutes

  1. Integration & Testing (Medium)

- Write unit tests

- Write integration tests

- Time: 15-25 minutes

  1. Documentation (Simple)

- API documentation

- Usage examples

- Time: 10-15 minutes

```

Complexity Assessment Matrix

```

Simple Milestone:

β”œβ”€ Single file modification

β”œβ”€ Well-defined scope

β”œβ”€ No external dependencies

β”œβ”€ Existing patterns to follow

└─ Estimated: 10-20 minutes

Medium Milestone:

β”œβ”€ Multiple file modifications

β”œβ”€ Some external dependencies

β”œβ”€ Integration with existing code

β”œβ”€ Moderate complexity

└─ Estimated: 20-45 minutes

Complex Milestone:

β”œβ”€ Multiple component changes

β”œβ”€ New dependencies or frameworks

β”œβ”€ Significant integration work

β”œβ”€ Architectural considerations

└─ Estimated: 45-90 minutes

Expert Milestone:

β”œβ”€ Major architectural changes

β”œβ”€ Multiple system integrations

β”œβ”€ Advanced algorithms or patterns

β”œβ”€ Security-critical implementations

└─ Estimated: 90+ minutes

```

Milestone Sequencing

Pattern: Dependency-First Ordering

```

Order milestones to minimize dependencies:

  1. Foundation Layer

- Dependencies

- Configuration

- Data models

  1. Core Logic Layer

- Business logic

- Core algorithms

- Main functionality

  1. Integration Layer

- API endpoints

- External integrations

- Service connections

  1. Quality Layer

- Testing

- Documentation

- Validation

```

Incremental Development Patterns

Commit-Per-Milestone Strategy

Pattern: Working State Commits

```

Each milestone must result in a working state:

βœ… Good Milestone:

  • Feature partially complete but functional
  • All tests pass for implemented functionality
  • No breaking changes to existing code
  • Commit: "feat: add user authentication (phase 1/3)"

❌ Bad Milestone:

  • Feature incomplete and non-functional
  • Tests failing
  • Breaking changes uncommitted
  • Half-implemented logic

```

Conventional Commit Format

```

():

[optional body]

[optional footer]

Types:

  • feat: New feature
  • fix: Bug fix
  • refactor: Code refactoring
  • test: Adding tests
  • docs: Documentation
  • chore: Maintenance
  • perf: Performance improvement

Examples:

feat(mqtt): add broker connection with SSL

fix(auth): correct token validation logic

test(api): add integration tests for user endpoints

docs(readme): update installation instructions

```

Progressive Enhancement Pattern

```

Start simple, enhance progressively:

Phase 1: Basic Implementation

β”œβ”€ Core functionality only

β”œβ”€ No error handling

β”œβ”€ No optimization

└─ Purpose: Prove concept works

Phase 2: Error Handling

β”œβ”€ Add try-catch blocks

β”œβ”€ Add input validation

β”œβ”€ Add logging

└─ Purpose: Make it robust

Phase 3: Optimization

β”œβ”€ Performance improvements

β”œβ”€ Memory optimization

β”œβ”€ Caching if needed

└─ Purpose: Make it efficient

Phase 4: Polish

β”œβ”€ Documentation

β”œβ”€ Examples

β”œβ”€ Edge case handling

└─ Purpose: Make it production-ready

```

Auto-Debugging Strategies

Error Classification System

```

Error Categories and Fix Strategies:

  1. Syntax Errors (100% auto-fixable)

- Missing colons, brackets, quotes

- Indentation errors

- Strategy: Parse and fix immediately

  1. Import Errors (95% auto-fixable)

- Missing imports

- Incorrect module paths

- Strategy: Auto-add imports, fix paths

  1. Type Errors (90% auto-fixable)

- Type mismatches

- Type hint violations

- Strategy: Add type conversions or fix hints

  1. Name Errors (85% auto-fixable)

- Undefined variables

- Typos in names

- Strategy: Fix typos or add definitions

  1. Logic Errors (60% auto-fixable)

- Wrong algorithm

- Incorrect conditions

- Strategy: Analyze and refactor logic

  1. Integration Errors (70% auto-fixable)

- Connection failures

- API mismatches

- Strategy: Add retry logic, fix endpoints

  1. Performance Errors (40% auto-fixable)

- Timeouts

- Memory issues

- Strategy: Optimize algorithms, add caching

```

Debug Loop Pattern

```

Maximum 5 iterations per issue:

Iteration 1: Quick Fix (confidence > 90%)

β”œβ”€ Fix obvious issues (typos, imports)

β”œβ”€ Success rate: 70%

└─ Time: 30 seconds

Iteration 2: Pattern-Based Fix (confidence 70-90%)

β”œβ”€ Apply known successful patterns

β”œβ”€ Success rate: 50%

└─ Time: 1-2 minutes

Iteration 3: Analysis-Based Fix (confidence 50-70%)

β”œβ”€ Deep error analysis

β”œβ”€ Root cause investigation

β”œβ”€ Success rate: 30%

└─ Time: 3-5 minutes

Iteration 4: Alternative Approach (confidence 30-50%)

β”œβ”€ Try different implementation

β”œβ”€ Success rate: 20%

└─ Time: 5-10 minutes

Iteration 5: Last Attempt (confidence < 30%)

β”œβ”€ Aggressive fixes

β”œβ”€ Success rate: 10%

└─ Time: 10-15 minutes

If all iterations fail β†’ Manual intervention required

```

Common Fix Patterns

Connection Retry Pattern

```python

# Problem: Connection refused

# Fix: Add exponential backoff retry

import time

from functools import wraps

def with_retry(max_attempts=3, backoff_factor=2):

def decorator(func):

@wraps(func)

def wrapper(args, *kwargs):

for attempt in range(max_attempts):

try:

return func(args, *kwargs)

except ConnectionError as e:

if attempt == max_attempts - 1:

raise

delay = backoff_factor ** attempt

time.sleep(delay)

return None

return wrapper

return decorator

@with_retry(max_attempts=3)

def connect_to_service():

# Connection logic

pass

```

Type Conversion Pattern

```python

# Problem: Type mismatch (str vs int)

# Fix: Add safe type conversion

def safe_int(value, default=0):

try:

return int(value)

except (ValueError, TypeError):

return default

# Usage

user_id = safe_int(request.params.get('user_id'))

```

Null Safety Pattern

```python

# Problem: NoneType attribute error

# Fix: Add null checks

# Bad

result = data.get('user').get('name')

# Good

result = data.get('user', {}).get('name', 'Unknown')

# Better

user = data.get('user')

result = user.get('name', 'Unknown') if user else 'Unknown'

```

Parameter Validation Pattern

```python

# Problem: Invalid parameters

# Fix: Add validation decorator

from functools import wraps

from typing import get_type_hints

def validate_params(func):

@wraps(func)

def wrapper(args, *kwargs):

hints = get_type_hints(func)

for param_name, param_type in hints.items():

if param_name in kwargs:

value = kwargs[param_name]

if not isinstance(value, param_type):

raise TypeError(

f"{param_name} must be {param_type}, "

f"got {type(value)}"

)

return func(args, *kwargs)

return wrapper

@validate_params

def create_user(name: str, age: int) -> dict:

return {'name': name, 'age': age}

```

Parameter Consistency Validation

Cross-File Parameter Validation

```

Critical validation checklist:

  1. Function Signatures

βœ“ Parameter names match between definition and calls

βœ“ Parameter order consistent

βœ“ Default values aligned

  1. Configuration Files

βœ“ Config keys match code usage

βœ“ Environment variables consistent

βœ“ No undefined config references

  1. Type Consistency

βœ“ Type hints present and correct

βœ“ Return types specified

βœ“ Type conversions explicit

  1. API Contracts

βœ“ Request parameters match backend expectations

βœ“ Response structure consistent

βœ“ Error codes standardized

  1. Database Schemas

βœ“ Column names match model attributes

βœ“ Data types aligned

βœ“ Foreign key constraints correct

```

Validation Automation Pattern

```python

# Automated parameter validation

def validate_function_calls(codebase):

issues = []

# Extract all function definitions

definitions = extract_function_definitions(codebase)

# Extract all function calls

calls = extract_function_calls(codebase)

for call in calls:

definition = definitions.get(call.function_name)

if not definition:

issues.append({

'type': 'undefined_function',

'function': call.function_name,

'location': call.location

})

continue

# Check parameter count

if len(call.args) != len(definition.params):

issues.append({

'type': 'parameter_count_mismatch',

'function': call.function_name,

'expected': len(definition.params),

'actual': len(call.args)

})

# Check parameter names (for keyword args)

for arg_name in call.kwargs:

if arg_name not in definition.param_names:

issues.append({

'type': 'undefined_parameter',

'function': call.function_name,

'parameter': arg_name

})

return issues

```

Quality Assurance Patterns

Quality Score Calculation

```

Quality Score (0-100):

Code Quality (40 points):

β”œβ”€ Syntax correctness (10)

β”œβ”€ Style compliance (10)

β”œβ”€ Code complexity (10)

└─ Best practices (10)

Test Quality (30 points):

β”œβ”€ Test coverage (15)

β”œβ”€ Test success rate (10)

└─ Test quality (5)

Documentation Quality (20 points):

β”œβ”€ Docstrings (10)

β”œβ”€ Comments (5)

└─ Examples (5)

Security Quality (10 points):

β”œβ”€ No vulnerabilities (5)

β”œβ”€ Secure patterns (5)

Thresholds:

β”œβ”€ 85-100: Excellent (production-ready)

β”œβ”€ 70-84: Good (acceptable)

β”œβ”€ 50-69: Fair (needs improvement)

└─ 0-49: Poor (not acceptable)

```

Auto-Fix Priority System

```

Fix Priority Order:

Priority 1 (Always fix):

β”œβ”€ Syntax errors

β”œβ”€ Import errors

β”œβ”€ Undefined variables

β”œβ”€ Type errors (obvious)

└─ Success rate: 95%+

Priority 2 (Usually fix):

β”œβ”€ Style violations

β”œβ”€ Missing docstrings

β”œβ”€ Unused imports

β”œβ”€ Simple complexity issues

└─ Success rate: 80-95%

Priority 3 (Suggest fix):

β”œβ”€ Complex refactoring

β”œβ”€ Performance optimizations

β”œβ”€ Architecture improvements

└─ Success rate: 60-80%

Priority 4 (Report only):

β”œβ”€ Design decisions

β”œβ”€ Major refactoring

β”œβ”€ Architectural changes

└─ Requires human judgment

```

Testing Strategies for Autonomous Development

Test Generation Priorities

```

Test Priority Matrix:

Critical Path Tests (Must have):

β”œβ”€ Core functionality tests

β”œβ”€ Error handling tests

β”œβ”€ Edge case tests

└─ Coverage target: 100%

Integration Tests (Should have):

β”œβ”€ Component integration

β”œβ”€ External service integration

β”œβ”€ End-to-end workflows

└─ Coverage target: 80%

Performance Tests (Nice to have):

β”œβ”€ Load tests

β”œβ”€ Stress tests

β”œβ”€ Benchmark tests

└─ Coverage target: 50%

```

Test-First Development Pattern

```

For autonomous development:

  1. Generate Test Cases First

- Based on requirements

- Cover happy path and edge cases

- Include error scenarios

  1. Implement to Pass Tests

- Write minimal code to pass

- Refactor after passing

- Maintain test coverage

  1. Expand Tests as Needed

- Add tests for bugs found

- Add tests for edge cases discovered

- Keep tests up-to-date

```

Requirements Verification Patterns

Acceptance Criteria Validation

```

Verification Checklist Template:

Functional Requirements:

β”œβ”€ [ ] Feature X implemented

β”œβ”€ [ ] Feature Y working

β”œβ”€ [ ] All specified behaviors present

└─ [ ] Edge cases handled

Non-Functional Requirements:

β”œβ”€ [ ] Performance targets met

β”œβ”€ [ ] Security requirements satisfied

β”œβ”€ [ ] Scalability considered

└─ [ ] Maintainability ensured

Quality Requirements:

β”œβ”€ [ ] Tests passing (100%)

β”œβ”€ [ ] Code quality β‰₯ 85/100

β”œβ”€ [ ] Documentation complete

└─ [ ] No critical issues

User Experience:

β”œβ”€ [ ] Easy to use

β”œβ”€ [ ] Clear error messages

β”œβ”€ [ ] Good documentation

└─ [ ] Examples provided

```

Integration with Learning System

Pattern Storage for Development

```json

{

"dev_pattern": {

"requirement_type": "mqtt_integration",

"complexity": "medium",

"successful_approach": {

"milestone_count": 5,

"milestone_sequence": [

"dependencies",

"core_logic",

"integration",

"testing",

"documentation"

],

"avg_milestone_time": 9.7,

"total_time": 48.5

},

"common_issues": [

{

"issue": "certificate_path_mismatch",

"frequency": 0.65,

"fix": "use_relative_paths",

"success_rate": 0.95

},

{

"issue": "connection_timeout",

"frequency": 0.45,

"fix": "add_retry_logic",

"success_rate": 0.88

}

],

"quality_metrics": {

"avg_code_quality": 92,

"avg_test_coverage": 91,

"avg_security_score": 94

},

"skill_effectiveness": {

"code-analysis": 0.94,

"testing-strategies": 0.91,

"security-patterns": 0.88

}

}

}

```

Best Practices

DO's

βœ… Break Down Complexity

  • Decompose requirements into small, manageable milestones
  • Each milestone should be independently testable
  • Commit each working milestone

βœ… Validate Continuously

  • Run tests after each change
  • Check parameter consistency frequently
  • Validate type safety throughout

βœ… Debug Systematically

  • Start with high-confidence fixes
  • Use pattern-based approaches
  • Learn from failures

βœ… Document Progressively

  • Document as you implement
  • Keep documentation synchronized
  • Include usage examples

βœ… Learn from Experience

  • Store successful patterns
  • Record failed approaches
  • Optimize based on learnings

DON'Ts

❌ Don't Skip Validation

  • Never commit without tests passing
  • Don't ignore parameter mismatches
  • Don't skip quality checks

❌ Don't Implement Everything at Once

  • Avoid big-bang implementation
  • Don't commit non-working code
  • Don't skip incremental commits

❌ Don't Ignore Patterns

  • Don't repeat failed approaches
  • Don't ignore learned patterns
  • Don't make same mistakes twice

❌ Don't Compromise Quality

  • Don't accept quality score < 70
  • Don't skip security validation
  • Don't skip documentation

Advanced Patterns

Parallel Milestone Execution

```

When milestones are independent:

Sequential (slower):

Milestone 1 β†’ Milestone 2 β†’ Milestone 3

Total time: 30 minutes

Parallel (faster):

Milestone 1 ─┐

Milestone 2 ─┼→ Sync β†’ Milestone 4

Milestone 3 β”€β”˜

Total time: 12 minutes

Use parallel execution for:

  • Independent components
  • Test generation
  • Documentation updates
  • Multiple bug fixes

```

Adaptive Planning Pattern

```

Adjust plan based on execution:

Initial Plan:

β”œβ”€ Milestone 1: 15 min (estimated)

β”œβ”€ Milestone 2: 20 min (estimated)

β”œβ”€ Milestone 3: 15 min (estimated)

└─ Total: 50 minutes

After Milestone 1 (took 25 min):

β”œβ”€ Reason: Unexpected complexity

β”œβ”€ Adjust remaining estimates: +10 min each

β”œβ”€ New total: 70 minutes

└─ Re-evaluate approach if needed

```

The Autonomous Development skill provides comprehensive guidance for managing full development lifecycles with minimal human intervention, ensuring high quality and continuous improvement through learning.

More from this repository10

πŸͺ
bejranonda-llm-autonomous-agent-plugin-for-claudeπŸͺMarketplace

Premium marketplace for revolutionary autonomous AI agents featuring four-tier architecture, intelligent pattern learning, comprehensive quality control, and full-stack validation with 80-90% auto-fix success rates.

🎯
web-validation🎯Skill

Validates web applications by detecting JavaScript errors, capturing screenshots, testing authentication flows, and monitoring browser console across multiple device viewports.

🎯
performance-scaling🎯Skill

Optimizes autonomous agent performance across different LLM models by dynamically adjusting scaling factors, execution strategies, and quality thresholds.

🎯
integrity-validation🎯Skill

Validates system integrity by performing pre and post-operation component inventories, detecting missing elements, and generating immediate recovery alerts.

🎯
validation-standards🎯Skill

Validates Claude Code tool usage by enforcing strict rules for file reading, editing, writing, and preventing common operational errors.

🎯
security-patterns🎯Skill

Implements security design pattern recognition and recommendation strategies for software architecture and code development.

🎯
decision-frameworks🎯Skill

Evaluates complex decisions using structured frameworks like SWOT, cost-benefit analysis, and decision trees to provide systematic problem-solving guidance.

🎯
model-detection🎯Skill

Detects and configures AI models dynamically to optimize cross-model compatibility and performance.

🎯
gui-design-principles🎯Skill

Guides developers in applying essential graphical user interface (GUI) design principles to create intuitive and user-friendly software interfaces.

🎯
pattern-learning🎯Skill

Autonomously learns, stores, and retrieves project-specific task execution patterns to continuously improve skill performance and strategy recommendations.