🎯

performance-scaling

🎯Skill

from bejranonda/llm-autonomous-agent-plugin-for-claude

VibeIndex|
What it does

Optimizes autonomous agent performance across different LLM models by dynamically adjusting scaling factors, execution strategies, and quality thresholds.

πŸ“¦

Part of

bejranonda/llm-autonomous-agent-plugin-for-claude(25 items)

performance-scaling

Installation

PythonRun Python server
python lib/web_page_validator.py http://localhost:3000 --screenshot
PythonRun Python server
python lib/web_page_validator.py http://localhost:3000/dashboard \
PythonRun Python server
python lib/web_page_validator.py http://localhost:3000 --viewport all --screenshot
Install PluginInstall plugin from marketplace
/plugin install https://github.com/bejranonda/LLM-Autonomous-Agent-Plugin-for-Claude
Claude CodeAdd plugin in Claude Code
/plugin list

+ 2 more commands

πŸ“– Extracted from docs: bejranonda/llm-autonomous-agent-plugin-for-claude
2Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Cross-model performance optimization and scaling configurations for autonomous agents

Overview

This skill provides performance scaling and optimization strategies for autonomous agents across different LLM models, ensuring optimal execution characteristics while maintaining quality standards.

Model Performance Profiles

Claude Sonnet 4.5 Performance Profile

```json

{

"model": "claude-sonnet-4.5",

"base_performance": {

"execution_speed": "fast",

"reasoning_depth": "high",

"context_switching": "excellent",

"adaptability": "very_high"

},

"scaling_factors": {

"time_multiplier": 1.0,

"quality_target": 90,

"complexity_handling": 0.9,

"parallel_processing": 1.2

},

"optimization_strategies": [

"context_merging",

"predictive_delegation",

"pattern_weighting",

"adaptive_quality_thresholds"

]

}

```

Claude Haiku 4.5 Performance Profile

```json

{

"model": "claude-haiku-4.5",

"base_performance": {

"execution_speed": "very_fast",

"reasoning_depth": "medium",

"context_switching": "good",

"adaptability": "high"

},

"scaling_factors": {

"time_multiplier": 0.8,

"quality_target": 88,

"complexity_handling": 1.1,

"parallel_processing": 1.0

},

"optimization_strategies": [

"fast_execution",

"selective_processing",

"efficient_delegation",

"streamlined_quality_checks"

]

}

```

Claude Opus 4.1 Performance Profile

```json

{

"model": "claude-opus-4.1",

"base_performance": {

"execution_speed": "very_fast",

"reasoning_depth": "very_high",

"context_switching": "excellent",

"adaptability": "maximum"

},

"scaling_factors": {

"time_multiplier": 0.9,

"quality_target": 95,

"complexity_handling": 0.8,

"parallel_processing": 1.4

},

"optimization_strategies": [

"anticipatory_execution",

"enhanced_parallelization",

"predictive_caching",

"advanced_pattern_recognition"

]

}

```

GLM-4.6 Performance Profile

```json

{

"model": "glm-4.6",

"base_performance": {

"execution_speed": "moderate",

"reasoning_depth": "medium",

"context_switching": "good",

"adaptability": "medium"

},

"scaling_factors": {

"time_multiplier": 1.25,

"quality_target": 88,

"complexity_handling": 1.2,

"parallel_processing": 0.8

},

"optimization_strategies": [

"structured_sequencing",

"explicit_instruction_optimization",

"step_by_step_validation",

"clear_handoff_protocols"

]

}

```

Performance Scaling Strategies

Time-Based Scaling

Execution Time Allocation:

```javascript

function scaleExecutionTime(baseTime, model, complexity) {

const profiles = {

'claude-sonnet': { multiplier: 1.0, complexity_factor: 0.9 },

'claude-4.5': { multiplier: 0.9, complexity_factor: 0.8 },

'glm-4.6': { multiplier: 1.25, complexity_factor: 1.2 },

'fallback': { multiplier: 1.5, complexity_factor: 1.4 }

};

const profile = profiles[model] || profiles.fallback;

return baseTime profile.multiplier (1 + complexity * profile.complexity_factor);

}

```

Timeout Adjustments:

  • Claude Sonnet: Standard timeouts with 10% buffer
  • Claude 4.5: Reduced timeouts with 5% buffer
  • GLM-4.6: Extended timeouts with 25% buffer
  • Fallback: Conservative timeouts with 50% buffer

Quality Target Scaling

Model-Specific Quality Targets:

```javascript

function getQualityTarget(model, taskType) {

const baseTargets = {

'claude-sonnet': { simple: 85, complex: 90, critical: 95 },

'claude-4.5': { simple: 88, complex: 92, critical: 96 },

'glm-4.6': { simple: 82, complex: 88, critical: 92 },

'fallback': { simple: 80, complex: 85, critical: 90 }

};

return baseTargets[model]?.[taskType] || baseTargets.fallback.complex;

}

```

Quality Assessment Adaptation:

  • Claude Models: Emphasize contextual understanding and pattern recognition
  • GLM Models: Emphasize structured accuracy and procedural correctness

Resource Scaling

Memory Management:

```javascript

function scaleMemoryUsage(model, taskSize) {

const profiles = {

'claude-sonnet': { base_memory: 'medium', scaling_factor: 1.1 },

'claude-4.5': { base_memory: 'medium', scaling_factor: 1.0 },

'glm-4.6': { base_memory: 'high', scaling_factor: 1.3 },

'fallback': { base_memory: 'high', scaling_factor: 1.5 }

};

const profile = profiles[model] || profiles.fallback;

return allocateMemory(profile.base_memory, taskSize * profile.scaling_factor);

}

```

Concurrent Task Limits:

  • Claude Sonnet: 3-4 concurrent tasks
  • Claude 4.5: 4-5 concurrent tasks
  • GLM-4.6: 2-3 concurrent tasks
  • Fallback: 1-2 concurrent tasks

Adaptive Optimization Algorithms

Dynamic Performance Adjustment

Real-Time Performance Monitoring:

```javascript

function monitorPerformance(model, currentMetrics) {

const baseline = getPerformanceBaseline(model);

const variance = calculateVariance(currentMetrics, baseline);

if (variance > 0.2) {

// Performance deviating significantly from baseline

return adjustPerformanceParameters(model, currentMetrics);

}

return currentMetrics;

}

```

Automatic Parameter Tuning:

```javascript

function tuneParameters(model, taskHistory) {

const performance = analyzeTaskPerformance(taskHistory);

const adjustments = calculateOptimalAdjustments(model, performance);

return {

timeout_adjustments: adjustments.timeouts,

quality_thresholds: adjustments.quality,

resource_allocation: adjustments.resources,

delegation_strategy: adjustments.delegation

};

}

```

Learning-Based Optimization

Pattern Recognition for Performance:

```javascript

function learnPerformancePatterns(executionHistory) {

const patterns = {

successful_executions: extractSuccessPatterns(executionHistory),

failed_executions: extractFailurePatterns(executionHistory),

optimization_opportunities: identifyOptimizations(executionHistory)

};

return generatePerformanceRecommendations(patterns);

}

```

Model-Specific Learning:

  • Claude Models: Learn from nuanced patterns and contextual factors
  • GLM Models: Learn from structured procedures and clear success/failure patterns

Performance Metrics and KPIs

Core Performance Indicators

Execution Metrics:

  • Task Completion Time: Time from task start to completion
  • Quality Achievement: Final quality score vs target
  • Resource Efficiency: Memory and CPU usage efficiency
  • Error Rate: Frequency of errors requiring recovery

Model-Specific KPIs:

```javascript

const modelKPIs = {

'claude-sonnet': {

'context_switching_efficiency': '>= 90%',

'pattern_recognition_accuracy': '>= 85%',

'adaptive_decision_quality': '>= 88%'

},

'claude-4.5': {

'predictive_accuracy': '>= 80%',

'anticipatory_optimization': '>= 75%',

'enhanced_reasoning_utilization': '>= 90%'

},

'glm-4.6': {

'procedural_accuracy': '>= 95%',

'structured_execution_compliance': '>= 98%',

'explicit_instruction_success': '>= 92%'

}

};

```

Performance Benchmarking

Comparative Analysis:

```javascript

function benchmarkPerformance(model, testSuite) {

const results = runPerformanceTests(model, testSuite);

const baseline = getIndustryBaseline(model);

return {

relative_performance: results.score / baseline.score,

improvement_opportunities: identifyImprovements(results, baseline),

model_strengths: analyzeModelStrengths(results),

optimization_recommendations: generateRecommendations(results)

};

}

```

Performance Optimization Techniques

Model-Specific Optimizations

Claude Sonnet Optimizations:

  1. Context Merging: Combine related contexts to reduce switching overhead
  2. Weight-Based Decision Making: Use historical success patterns for decisions
  3. Progressive Loading: Load skills progressively based on immediate needs
  4. Adaptive Quality Thresholds: Adjust quality targets based on task complexity

Claude 4.5 Optimizations:

  1. Anticipatory Execution: Start likely tasks before explicit request
  2. Enhanced Parallelization: Maximize concurrent task execution
  3. Predictive Caching: Cache likely-needed resources proactively
  4. Advanced Pattern Matching: Use complex pattern recognition for optimization

GLM-4.6 Optimizations:

  1. Structured Sequencing: Optimize task order for efficiency
  2. Explicit Instruction Optimization: Minimize ambiguity in instructions
  3. Step-by-Step Validation: Validate each step before proceeding
  4. Clear Handoff Protocols: Ensure clean transitions between tasks

Universal Optimizations

Cross-Model Techniques:

  1. Resource Pooling: Share resources across compatible tasks
  2. Intelligent Caching: Cache results based on usage patterns
  3. Batch Processing: Group similar operations for efficiency
  4. Lazy Loading: Load resources only when needed

Implementation Guidelines

Performance Configuration Loading

```javascript

function loadPerformanceConfiguration(model) {

const baseConfig = getBasePerformanceProfile(model);

const historicalData = getHistoricalPerformanceData(model);

const currentContext = assessCurrentContext();

return mergeAndOptimizeConfiguration(baseConfig, historicalData, currentContext);

}

```

Runtime Performance Adjustment

```javascript

function adjustRuntimePerformance(currentMetrics, targetProfile) {

const adjustments = calculateNeededAdjustments(currentMetrics, targetProfile);

return {

timeout_adjustments: adjustments.timeouts,

quality_modifications: adjustments.quality,

resource_reallocation: adjustments.resources,

strategy_changes: adjustments.strategy

};

}

```

Performance Monitoring and Alerting

```javascript

function monitorPerformanceHealth(model, metrics) {

const healthScore = calculatePerformanceHealth(model, metrics);

if (healthScore < 0.8) {

return {

status: 'degraded',

recommendations: generateImprovementActions(model, metrics),

automatic_adjustments: applyAutomaticOptimizations(model, metrics)

};

}

return { status: 'healthy', score: healthScore };

}

```

Usage Guidelines

When to Apply Performance Scaling

  1. Task Initialization: Set performance targets based on model and task type
  2. Mid-Execution Adjustment: Adapt parameters based on current performance
  3. Resource Optimization: Scale resource allocation based on availability
  4. Quality-Performance Tradeoffs: Balance speed vs accuracy based on requirements

Integration Points

  • Orchestrator Agent: Use for task planning and resource allocation
  • All Specialized Agents: Use for model-specific execution optimization
  • Quality Controller: Use for adaptive quality target setting
  • Background Task Manager: Use for concurrent task optimization

This skill ensures optimal performance across all supported models while maintaining high quality standards and adapting to varying task requirements.

More from this repository10

πŸͺ
bejranonda-llm-autonomous-agent-plugin-for-claudeπŸͺMarketplace

Premium marketplace for revolutionary autonomous AI agents featuring four-tier architecture, intelligent pattern learning, comprehensive quality control, and full-stack validation with 80-90% auto-fix success rates.

🎯
web-validation🎯Skill

Validates web applications by detecting JavaScript errors, capturing screenshots, testing authentication flows, and monitoring browser console across multiple device viewports.

🎯
security-patterns🎯Skill

Implements security design pattern recognition and recommendation strategies for software architecture and code development.

🎯
model-detection🎯Skill

Detects and configures AI models dynamically to optimize cross-model compatibility and performance.

🎯
decision-frameworks🎯Skill

Evaluates complex decisions using structured frameworks like SWOT, cost-benefit analysis, and decision trees to provide systematic problem-solving guidance.

🎯
gui-design-principles🎯Skill

Guides developers in applying essential graphical user interface (GUI) design principles to create intuitive and user-friendly software interfaces.

🎯
claude-plugin-validation🎯Skill

Validates Claude Code plugin manifests and structures to ensure guideline compliance, prevent installation failures, and maintain compatibility.

🎯
autonomous-development🎯Skill

Autonomously plans, breaks down, and implements software development projects with incremental milestones, auto-debugging, and continuous quality validation.

🎯
frontend-aesthetics🎯Skill

Guides frontend design to create distinctive, polished interfaces by avoiding generic AI defaults and implementing thoughtful typography, color, and animation principles.

🎯
validation-standards🎯Skill

Validates Claude Code tool usage by enforcing strict rules for file reading, editing, writing, and preventing common operational errors.