implementation
π―Skillfrom matteocervelli/llms
Systematically implements software features by writing tests first, creating clean code, and documenting according to project standards.
Installation
npx skills add https://github.com/matteocervelli/llms --skill implementationSkill Details
Implement features with code, tests, and documentation. Use when building
Overview
# Feature Implementation Skill
Purpose
This skill provides systematic guidance for implementing features with high-quality code, comprehensive tests, and proper documentation, following project standards and best practices.
When to Use
- After design phase is complete and approved
- Need to implement code for a feature
- Writing unit and integration tests
- Creating technical documentation
- Following TDD (Test-Driven Development) workflow
Implementation Workflow
1. Setup and Preparation
Review Design Document:
- Read architecture design from previous phase
- Understand component structure
- Review API contracts and data models
- Note security and performance requirements
Setup Development Environment:
```bash
# Activate virtual environment
source venv/bin/activate # or: uv venv && source .venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# or: uv pip install -r requirements.txt
# Install dev dependencies
pip install -e ".[dev]"
```
Create Feature Branch:
```bash
git checkout -b feature/feature-name
```
Deliverable: Development environment ready
---
2. Test-Driven Development (TDD)
TDD Cycle: Red β Green β Refactor
Step 1: Write Failing Test (Red)
```python
# tests/test_feature.py
import pytest
from feature import process_data
def test_process_data_success():
"""Test successful data processing."""
# Arrange
input_data = {"name": "test", "value": 123}
# Act
result = process_data(input_data)
# Assert
assert result.name == "test"
assert result.value == 123
```
Step 2: Write Minimal Code (Green)
```python
# src/tools/feature/core.py
def process_data(input_data: dict):
"""Process input data."""
# Minimal implementation to pass test
return type('Result', (), input_data)()
```
Step 3: Refactor (Refactor)
```python
# src/tools/feature/core.py
from .models import InputModel, ResultModel
def process_data(input_data: dict) -> ResultModel:
"""
Process input data and return result.
Args:
input_data: Input data dictionary
Returns:
ResultModel with processed data
Raises:
ValidationError: If input is invalid
"""
# Proper implementation with validation
validated = InputModel(**input_data)
return ResultModel(
name=validated.name,
value=validated.value
)
```
Repeat: Write next test, implement, refactor
Deliverable: Tested, working code
---
3. Code Implementation
Follow Project Structure:
```
src/tools/feature_name/
βββ __init__.py # Public exports
βββ models.py # Pydantic models (data)
βββ interfaces.py # Abstract interfaces
βββ core.py # Core business logic
βββ repository.py # Data access layer
βββ validators.py # Input validation
βββ utils.py # Helper functions
βββ config.py # Configuration
βββ exceptions.py # Custom exceptions
βββ main.py # CLI entry point (if applicable)
```
Coding Standards:
Refer to code-style-guide.md for:
- PEP 8 style guide
- Type hints for all functions
- Google-style docstrings
- 500-line file limit
- Single responsibility principle
Example Implementation:
```python
# src/tools/feature/models.py
from pydantic import BaseModel, Field
from typing import Optional
from datetime import datetime
class FeatureInput(BaseModel):
"""Input model for feature."""
name: str = Field(..., min_length=1, max_length=100)
value: int = Field(..., ge=0)
class Config:
validate_assignment = True
class FeatureOutput(BaseModel):
"""Output model for feature."""
id: Optional[int] = None
name: str
value: int
created_at: datetime = Field(default_factory=datetime.utcnow)
# src/tools/feature/core.py
from .models import FeatureInput, FeatureOutput
from .repository import FeatureRepository
from .validators import FeatureValidator
class FeatureService:
"""Feature service with business logic."""
def __init__(
self,
repository: FeatureRepository,
validator: FeatureValidator
):
"""
Initialize service with dependencies.
Args:
repository: Repository for data access
validator: Validator for input validation
"""
self.repository = repository
self.validator = validator
def create(self, input_data: FeatureInput) -> FeatureOutput:
"""
Create new feature resource.
Args:
input_data: Validated input data
Returns:
FeatureOutput with created resource
Raises:
ValidationError: If validation fails
RepositoryError: If save fails
"""
# Validate
self.validator.validate_create(input_data)
# Create
output = FeatureOutput(
name=input_data.name,
value=input_data.value
)
# Persist
saved = self.repository.save(output)
return saved
```
Deliverable: Implemented core functionality
---
4. Testing Implementation
Testing Checklist:
Refer to testing-checklist.md for comprehensive coverage
Unit Tests (80%+ Coverage):
```python
# tests/test_core.py
import pytest
from unittest.mock import Mock, MagicMock
from feature.core import FeatureService
from feature.models import FeatureInput, FeatureOutput
@pytest.fixture
def mock_repository():
"""Mock repository for testing."""
repo = Mock()
repo.save.return_value = FeatureOutput(
id=1,
name="test",
value=123
)
return repo
@pytest.fixture
def mock_validator():
"""Mock validator for testing."""
validator = Mock()
validator.validate_create.return_value = None
return validator
@pytest.fixture
def service(mock_repository, mock_validator):
"""Service fixture with mocked dependencies."""
return FeatureService(
repository=mock_repository,
validator=mock_validator
)
def test_create_success(service, mock_repository):
"""Test successful creation."""
# Arrange
input_data = FeatureInput(name="test", value=123)
# Act
result = service.create(input_data)
# Assert
assert result.name == "test"
assert result.value == 123
mock_repository.save.assert_called_once()
def test_create_validation_error(service, mock_validator):
"""Test validation error handling."""
# Arrange
input_data = FeatureInput(name="test", value=123)
mock_validator.validate_create.side_effect = ValidationError("Invalid")
# Act & Assert
with pytest.raises(ValidationError):
service.create(input_data)
```
Integration Tests:
```python
# tests/integration/test_feature_integration.py
import pytest
from pathlib import Path
from feature import FeatureService, FileSystemRepository
@pytest.fixture
def temp_data_dir(tmp_path):
"""Temporary directory for test data."""
return tmp_path / "data"
def test_create_and_retrieve(temp_data_dir):
"""Test end-to-end create and retrieve."""
# Arrange
repo = FileSystemRepository(temp_data_dir)
service = FeatureService(repo)
# Act: Create
created = service.create(FeatureInput(name="test", value=123))
# Act: Retrieve
retrieved = service.get(created.id)
# Assert
assert retrieved.name == "test"
assert retrieved.value == 123
```
Run Tests:
```bash
# Run all tests with coverage
pytest --cov=src --cov-report=html --cov-report=term
# Run specific test file
pytest tests/test_core.py -v
# Run with markers
pytest -m "not slow" -v
```
Deliverable: Comprehensive test suite (80%+ coverage)
---
5. Code Quality Checks
Run Formatters and Linters:
```bash
# Format code with Black
black src/ tests/
# Type check with mypy
mypy src/
# Lint with flake8 (if configured)
flake8 src/ tests/
# Run all checks
make lint # If Makefile configured
```
Pre-commit Hooks (If Configured):
```bash
# Run pre-commit checks
pre-commit run --all-files
```
Code Review Checklist:
- [ ] All functions have type hints
- [ ] All functions have docstrings
- [ ] No files exceed 500 lines
- [ ] Tests achieve 80%+ coverage
- [ ] No lint errors or warnings
- [ ] Error handling implemented
- [ ] Logging added where appropriate
- [ ] Security best practices followed
Deliverable: Quality-checked code
---
6. Documentation
Code Documentation:
- Docstrings for all public functions/classes
- Inline comments for complex logic
- Type hints for clarity
Technical Documentation:
```markdown
# Feature Implementation
Overview
[What was implemented]
Architecture
[Actual structure (may differ from design)]
Usage Examples
```python
from feature import FeatureService
service = FeatureService()
result = service.create(name="example")
```
Configuration
Required environment variables:
FEATURE_API_KEY: API key for serviceFEATURE_TIMEOUT: Timeout in seconds (default: 30)
Testing
```bash
pytest tests/test_feature.py
```
Known Issues
- [Issue 1]: [Workaround]
Future Enhancements
- [Enhancement 1]
```
User Documentation (If Applicable):
- Usage guide in
docs/guides/ - CLI help text
- Example configurations
Deliverable: Complete documentation
---
7. Integration and Verification
Verify Against Requirements:
- [ ] All acceptance criteria met
- [ ] Security checklist items addressed
- [ ] Performance requirements met
- [ ] Edge cases handled
- [ ] Error scenarios tested
Manual Testing:
```bash
# Test CLI (if applicable)
python -m src.tools.feature.main create --name test
# Test with real data
python -m src.tools.feature.main --input sample.json
# Test error cases
python -m src.tools.feature.main --invalid-input
```
Integration with Existing Code:
- [ ] Imports work correctly
- [ ] No circular dependencies
- [ ] Backward compatibility maintained (if applicable)
- [ ] No breaking changes to public APIs
Deliverable: Verified, working feature
---
Code Style Guidelines
Python Style (PEP 8)
Imports:
```python
# Standard library
import os
import sys
from pathlib import Path
# Third-party
import click
from pydantic import BaseModel
# Local
from .models import FeatureModel
from .exceptions import FeatureError
```
Naming:
```python
# Classes: PascalCase
class FeatureService:
pass
# Functions/methods: snake_case
def process_data():
pass
# Constants: UPPER_SNAKE_CASE
MAX_RETRIES = 3
# Private: leading underscore
def _internal_helper():
pass
```
Type Hints:
```python
from typing import Optional, List, Dict, Union
def function(
required: str,
optional: Optional[int] = None,
items: List[str] = None
) -> Dict[str, Any]:
pass
```
Docstrings (Google Style):
```python
def function(param1: str, param2: int) -> bool:
"""
Short description.
Longer description if needed.
Args:
param1: Description of param1
param2: Description of param2
Returns:
Description of return value
Raises:
ValueError: When this happens
"""
pass
```
---
Testing Best Practices
Pytest Conventions
Test File Naming:
test_.pyor_test.py- Mirror source structure:
src/core.pyβtests/test_core.py
Test Function Naming:
```python
def test_function_name_condition_expected_result():
"""Test description."""
pass
# Examples:
def test_create_feature_valid_input_returns_feature():
pass
def test_validate_input_missing_name_raises_error():
pass
```
Test Structure (Arrange-Act-Assert):
```python
def test_example():
"""Test example."""
# Arrange: Setup test data and mocks
input_data = {"name": "test"}
mock_service = Mock()
# Act: Execute the code being tested
result = function_under_test(input_data, mock_service)
# Assert: Verify expected outcomes
assert result == expected
mock_service.method.assert_called_once()
```
Fixtures:
```python
# tests/conftest.py (shared fixtures)
import pytest
@pytest.fixture
def sample_data():
"""Sample data for tests."""
return {"name": "test", "value": 123}
@pytest.fixture
def temp_directory(tmp_path):
"""Temporary directory for test files."""
test_dir = tmp_path / "test_data"
test_dir.mkdir()
yield test_dir
# Cleanup happens automatically
```
Parametrize for Multiple Cases:
```python
@pytest.mark.parametrize("input_value,expected", [
("valid", True),
("invalid", False),
("", False),
])
def test_validation(input_value, expected):
"""Test validation with multiple inputs."""
result = validate(input_value)
assert result == expected
```
---
Common Patterns
Error Handling Pattern
```python
from typing import Optional
import logging
logger = logging.getLogger(__name__)
def process_data(data: dict) -> Result:
"""Process data with proper error handling."""
try:
# Validate
validated = validate_data(data)
# Process
result = perform_processing(validated)
return result
except ValidationError as e:
logger.warning(f"Validation failed: {e}")
raise
except ProcessingError as e:
logger.error(f"Processing failed: {e}", exc_info=True)
raise
except Exception as e:
logger.exception(f"Unexpected error: {e}")
raise ProcessingError("Unexpected error occurred") from e
```
Dependency Injection Pattern
```python
from abc import ABC, abstractmethod
# Interface
class Repository(ABC):
@abstractmethod
def save(self, data) -> None:
pass
# Implementation
class FileRepository(Repository):
def save(self, data) -> None:
# File-based implementation
pass
# Service with dependency injection
class Service:
def __init__(self, repository: Repository):
self.repository = repository # Injected dependency
def create(self, data):
# Use injected repository
self.repository.save(data)
# Usage
repo = FileRepository()
service = Service(repository=repo) # Inject dependency
```
Configuration Pattern
```python
from pydantic_settings import BaseSettings
class Config(BaseSettings):
"""Application configuration."""
api_key: str
timeout: int = 30
debug: bool = False
class Config:
env_prefix = "FEATURE_"
env_file = ".env"
# Usage
config = Config() # Loads from environment/file
service = Service(api_key=config.api_key, timeout=config.timeout)
```
---
Supporting Resources
- code-style-guide.md: Detailed Python style guidelines
- testing-checklist.md: Comprehensive testing requirements
- scripts/generate_tests.py: Test scaffolding automation
---
Integration with Feature Implementation Flow
Input: Approved architecture design
Process: TDD implementation with quality checks
Output: Tested, documented code
Next Step: Validation skill for quality assurance
---
Implementation Checklist
Before marking feature complete:
- [ ] All code implemented per design
- [ ] Unit tests written (80%+ coverage)
- [ ] Integration tests written
- [ ] All tests passing
- [ ] Code formatted (Black)
- [ ] Type checking passing (mypy)
- [ ] No lint errors
- [ ] Docstrings complete
- [ ] Technical documentation written
- [ ] User documentation written (if applicable)
- [ ] Manual testing completed
- [ ] Security considerations addressed
- [ ] Performance requirements met
- [ ] Code reviewed (if applicable)
- [ ] Ready for validation phase
More from this repository10
Generates comprehensive end-to-end browser tests using Playwright, implementing page object model and best practices for user workflow validation.
Analyzes project dependencies, builds dependency trees, detects conflicts, and checks compatibility across Python projects.
Generates comprehensive API endpoint tests for REST and GraphQL APIs, covering HTTP methods, authentication, validation, and error scenarios.
doc-analyzer skill from matteocervelli/llms
design-synthesizer skill from matteocervelli/llms
Fetches comprehensive, version-specific library and framework documentation using MCP integrations for accurate implementation guidance.
Systematically updates project documentation across implementation docs, user guides, API docs, and architecture diagrams after feature completion.
Designs comprehensive Pydantic data models with robust type annotations, validation rules, and relationship mappings for Python applications.
Automatically generates comprehensive unit tests for functions and methods, covering edge cases and improving code reliability with minimal manual effort
Designs clean, modular software architectures using established patterns like Layered and Hexagonal Architecture to create maintainable and scalable system structures.