🎯

computer-vision

🎯Skill

from pluginagentmarketplace/custom-plugin-ai-data-scientist

VibeIndex|
What it does

Processes and analyzes images using deep learning models for classification, detection, and visual understanding tasks.

πŸ“¦

Part of

pluginagentmarketplace/custom-plugin-ai-data-scientist(12 items)

computer-vision

Installation

Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add pluginagentmarketplace/custom-plugin-ai-data-scientist
Install PluginInstall plugin from marketplace
/plugin install ai-data-scientist-plugin@pluginagentmarketplace-ai-data-scientist
git cloneClone repository
git clone https://github.com/pluginagentmarketplace/custom-plugin-ai-data-scientist.git
Claude CodeAdd plugin in Claude Code
/plugin load .
πŸ“– Extracted from docs: pluginagentmarketplace/custom-plugin-ai-data-scientist
7Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Image processing, object detection, segmentation, and vision models. Use for image classification, object detection, or visual analysis tasks.

Overview

# Computer Vision

Build models to analyze and understand visual data.

Quick Start

Image Classification

```python

import torch

import torchvision.models as models

import torchvision.transforms as transforms

from PIL import Image

# Load pre-trained model

model = models.resnet50(pretrained=True)

model.eval()

# Preprocess image

transform = transforms.Compose([

transforms.Resize(256),

transforms.CenterCrop(224),

transforms.ToTensor(),

transforms.Normalize(

mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]

)

])

img = Image.open('image.jpg')

img_tensor = transform(img).unsqueeze(0)

# Predict

with torch.no_grad():

output = model(img_tensor)

probabilities = torch.nn.functional.softmax(output[0], dim=0)

top5 = torch.topk(probabilities, 5)

print(top5)

```

Custom CNN

```python

import torch.nn as nn

class SimpleCNN(nn.Module):

def __init__(self, num_classes=10):

super(SimpleCNN, self).__init__()

self.features = nn.Sequential(

nn.Conv2d(3, 32, kernel_size=3, padding=1),

nn.ReLU(),

nn.MaxPool2d(2, 2),

nn.Conv2d(32, 64, kernel_size=3, padding=1),

nn.ReLU(),

nn.MaxPool2d(2, 2),

nn.Conv2d(64, 128, kernel_size=3, padding=1),

nn.ReLU(),

nn.MaxPool2d(2, 2)

)

self.classifier = nn.Sequential(

nn.Flatten(),

nn.Linear(128 4 4, 512),

nn.ReLU(),

nn.Dropout(0.5),

nn.Linear(512, num_classes)

)

def forward(self, x):

x = self.features(x)

x = self.classifier(x)

return x

```

Data Augmentation

```python

from torchvision import transforms

train_transform = transforms.Compose([

transforms.RandomResizedCrop(224),

transforms.RandomHorizontalFlip(),

transforms.RandomRotation(15),

transforms.ColorJitter(

brightness=0.2,

contrast=0.2,

saturation=0.2,

hue=0.1

),

transforms.ToTensor(),

transforms.Normalize(

mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]

)

])

```

Object Detection with YOLO

```python

from ultralytics import YOLO

# Load model

model = YOLO('yolov8n.pt')

# Predict

results = model('image.jpg')

# Process results

for result in results:

boxes = result.boxes

for box in boxes:

x1, y1, x2, y2 = box.xyxy[0]

confidence = box.conf[0]

class_id = box.cls[0]

print(f"Class: {class_id}, Confidence: {confidence:.2f}")

print(f"Box: ({x1}, {y1}, {x2}, {y2})")

# Save results

results[0].save('output.jpg')

```

Image Segmentation

```python

# Semantic segmentation with DeepLab

model = torch.hub.load(

'pytorch/vision:v0.10.0',

'deeplabv3_resnet50',

pretrained=True

)

model.eval()

# Preprocess

preprocess = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize(

mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]

)

])

input_tensor = preprocess(img).unsqueeze(0)

# Predict

with torch.no_grad():

output = model(input_tensor)['out'][0]

output_predictions = output.argmax(0)

```

Transfer Learning

```python

from torchvision import models

# Load pre-trained ResNet

model = models.resnet50(pretrained=True)

# Freeze all layers

for param in model.parameters():

param.requires_grad = False

# Replace final layer

num_features = model.fc.in_features

model.fc = nn.Linear(num_features, num_classes)

# Train only final layer

optimizer = optim.Adam(model.fc.parameters(), lr=0.001)

```

Image Processing with OpenCV

```python

import cv2

# Read image

img = cv2.imread('image.jpg')

# Convert to grayscale

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Edge detection

edges = cv2.Canny(gray, 100, 200)

# Blur

blurred = cv2.GaussianBlur(img, (5, 5), 0)

# Resize

resized = cv2.resize(img, (224, 224))

# Draw rectangle

cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)

# Save

cv2.imwrite('output.jpg', img)

```

Face Detection

```python

# Haar Cascade

face_cascade = cv2.CascadeClassifier(

cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'

)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(gray, 1.1, 4)

for (x, y, w, h) in faces:

cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

```

Common Architectures

Image Classification:

  • ResNet: Skip connections, deep networks
  • EfficientNet: Compound scaling, efficient
  • Vision Transformer (ViT): Attention-based

Object Detection:

  • YOLO: Real-time, one-stage
  • Faster R-CNN: Two-stage, accurate
  • RetinaNet: Focal loss, handles class imbalance

Segmentation:

  • U-Net: Encoder-decoder, medical imaging
  • DeepLab: Atrous convolution, semantic segmentation
  • Mask R-CNN: Instance segmentation

Tips

  1. Use pre-trained models for transfer learning
  2. Apply data augmentation to prevent overfitting
  3. Normalize images (ImageNet statistics)
  4. Use appropriate loss functions (CrossEntropy, Focal Loss)
  5. Monitor training with visualization
  6. Test on diverse images

More from this repository10

🎯
reinforcement-learning🎯Skill

Trains intelligent agents to learn optimal behaviors through interaction with environments using reinforcement learning techniques.

🎯
machine-learning🎯Skill

Builds, trains, and evaluates machine learning models for classification, regression, and clustering using scikit-learn's powerful algorithms and techniques.

🎯
data-visualization🎯Skill

Generates interactive data visualizations and performs exploratory data analysis using Matplotlib, Seaborn, Plotly, and other visualization tools.

🎯
time-series🎯Skill

Performs time series analysis using ARIMA, SARIMA, Prophet, detecting trends, seasonality, and anomalies for precise temporal predictions.

🎯
statistical-analysis🎯Skill

Performs rigorous statistical analysis using Python's SciPy, enabling hypothesis testing, A/B testing, and data validation across various statistical methods.

🎯
python-programming🎯Skill

Enables efficient Python programming for data science, covering fundamentals, data manipulation, and advanced library usage with NumPy and Pandas.

🎯
data-engineering🎯Skill

Builds scalable data pipelines and infrastructure using Apache Spark, Airflow, and big data processing techniques for efficient ETL workflows.

🎯
model-optimization🎯Skill

Optimizes machine learning models through techniques like quantization, pruning, hyperparameter tuning, and AutoML for improved performance and efficiency.

🎯
deep-learning🎯Skill

Develops neural network models using PyTorch and TensorFlow for advanced machine learning tasks like image classification, NLP, and pattern recognition.

🎯
nlp-processing🎯Skill

nlp-processing skill from pluginagentmarketplace/custom-plugin-ai-data-scientist