🎯

python-programming

🎯Skill

from pluginagentmarketplace/custom-plugin-ai-data-scientist

VibeIndex|
What it does

Enables efficient Python programming for data science, covering fundamentals, data manipulation, and advanced library usage with NumPy and Pandas.

πŸ“¦

Part of

pluginagentmarketplace/custom-plugin-ai-data-scientist(12 items)

python-programming

Installation

Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add pluginagentmarketplace/custom-plugin-ai-data-scientist
Install PluginInstall plugin from marketplace
/plugin install ai-data-scientist-plugin@pluginagentmarketplace-ai-data-scientist
git cloneClone repository
git clone https://github.com/pluginagentmarketplace/custom-plugin-ai-data-scientist.git
Claude CodeAdd plugin in Claude Code
/plugin load .
πŸ“– Extracted from docs: pluginagentmarketplace/custom-plugin-ai-data-scientist
6Installs
-
AddedFeb 4, 2026

Skill Details

SKILL.md

Python fundamentals, data structures, OOP, and data science libraries (Pandas, NumPy). Use when writing Python code, data manipulation, or algorithm implementation.

Overview

# Python Programming for Data Science

Master Python from fundamentals to advanced data science applications.

Quick Start

Essential Libraries

```python

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

```

Data Manipulation

```python

# Read data

df = pd.read_csv('data.csv')

# Explore

print(df.head())

print(df.info())

print(df.describe())

# Filter

df_filtered = df[df['age'] > 18]

# Group and aggregate

summary = df.groupby('category')['sales'].agg(['sum', 'mean', 'count'])

# Vectorized operations (FAST!)

df['new_col'] = df['col1'] * 2 # Instead of loops

```

Core Concepts

1. Data Structures

  • Lists: [1, 2, 3] - ordered, mutable
  • Dictionaries: {'key': 'value'} - key-value pairs
  • Tuples: (1, 2, 3) - immutable
  • Sets: {1, 2, 3} - unique elements

2. List Comprehensions

```python

# Instead of loops

squares = [x**2 for x in range(10)]

filtered = [x for x in data if x > 0]

```

3. NumPy Arrays

```python

arr = np.array([1, 2, 3, 4, 5])

arr * 2 # [2, 4, 6, 8, 10]

arr.mean() # 3.0

```

4. Pandas DataFrames

```python

df = pd.DataFrame({

'name': ['Alice', 'Bob'],

'age': [25, 30],

'salary': [50000, 60000]

})

```

Performance Tips

Vectorization over Loops (10-100x faster):

```python

# Bad (slow)

result = []

for x in data:

result.append(x * 2)

# Good (fast)

result = np.array(data) * 2

```

Common Patterns

Reading Files

```python

# CSV

df = pd.read_csv('file.csv')

# Excel

df = pd.read_excel('file.xlsx', sheet_name='Sheet1')

# JSON

df = pd.read_json('file.json')

# SQL

import sqlite3

conn = sqlite3.connect('database.db')

df = pd.read_sql_query("SELECT * FROM table", conn)

```

Missing Data

```python

df.dropna() # Remove rows

df.fillna(0) # Fill with value

df.fillna(df.mean()) # Fill with mean

```

Merging Data

```python

# Join DataFrames

merged = pd.merge(df1, df2, on='id', how='left')

# Concatenate

combined = pd.concat([df1, df2], axis=0)

```

Best Practices

  1. Use vectorized operations
  2. Optimize data types
  3. Avoid loops when possible
  4. Use built-in functions
  5. Profile before optimizing

Troubleshooting

Common Issues

Problem: MemoryError with large DataFrames

```python

# Solution 1: Use chunking

for chunk in pd.read_csv('large.csv', chunksize=10000):

process(chunk)

# Solution 2: Optimize dtypes

df['int_col'] = df['int_col'].astype('int32') # Instead of int64

df['cat_col'] = df['cat_col'].astype('category') # For repeated strings

```

Problem: Slow DataFrame operations

```python

# Debug: Profile your code

%timeit df.apply(func) # Compare with vectorized

# Solution: Use vectorized operations

df['result'] = np.where(df['x'] > 0, df['x'] * 2, 0) # Instead of apply

```

Problem: Import errors

```bash

# Solution: Check environment

pip list | grep pandas

pip install --upgrade pandas numpy

# Virtual environment best practice

python -m venv venv

source venv/bin/activate # Linux/Mac

pip install -r requirements.txt

```

Problem: Data type mismatches

```python

# Debug: Check types

print(df.dtypes)

# Solution: Convert types explicitly

df['date'] = pd.to_datetime(df['date'])

df['price'] = pd.to_numeric(df['price'], errors='coerce')

```

Debug Checklist

  • [ ] Check Python and library versions
  • [ ] Verify data types with df.dtypes
  • [ ] Profile with %timeit before optimizing
  • [ ] Use df.info() for memory usage
  • [ ] Check for NaN values with df.isna().sum()

More from this repository10

🎯
reinforcement-learning🎯Skill

Trains intelligent agents to learn optimal behaviors through interaction with environments using reinforcement learning techniques.

🎯
computer-vision🎯Skill

Processes and analyzes images using deep learning models for classification, detection, and visual understanding tasks.

🎯
machine-learning🎯Skill

Builds, trains, and evaluates machine learning models for classification, regression, and clustering using scikit-learn's powerful algorithms and techniques.

🎯
data-visualization🎯Skill

Generates interactive data visualizations and performs exploratory data analysis using Matplotlib, Seaborn, Plotly, and other visualization tools.

🎯
time-series🎯Skill

Performs time series analysis using ARIMA, SARIMA, Prophet, detecting trends, seasonality, and anomalies for precise temporal predictions.

🎯
statistical-analysis🎯Skill

Performs rigorous statistical analysis using Python's SciPy, enabling hypothesis testing, A/B testing, and data validation across various statistical methods.

🎯
data-engineering🎯Skill

Builds scalable data pipelines and infrastructure using Apache Spark, Airflow, and big data processing techniques for efficient ETL workflows.

🎯
model-optimization🎯Skill

Optimizes machine learning models through techniques like quantization, pruning, hyperparameter tuning, and AutoML for improved performance and efficiency.

🎯
deep-learning🎯Skill

Develops neural network models using PyTorch and TensorFlow for advanced machine learning tasks like image classification, NLP, and pattern recognition.

🎯
mlops-deployment🎯Skill

mlops-deployment skill from pluginagentmarketplace/custom-plugin-ai-data-scientist