agent-cost-optimizer
π―Skillfrom adaptationio/skrillz
agent-cost-optimizer skill from adaptationio/skrillz
Part of
adaptationio/skrillz(191 items)
Installation
/plugin marketplace add adaptationio/Skrillz/plugin install skrillz@adaptationio-Skrillz/plugin enable skrillz@adaptationio-Skrillz/plugin marketplace add /path/to/skrillz/plugin install skrillz@local+ 4 more commands
Skill Details
Real-time cost tracking, budget enforcement, and ROI measurement for AI agent operations. Track token usage, predict costs, enforce budget caps ($50-70/month typical), optimize model selection, cache results, measure cost-to-value. Use when tracking AI costs, preventing budget overruns, optimizing spend, measuring ROI, or ensuring cost-effective AI operations.
Overview
# Agent Cost Optimizer
Overview
agent-cost-optimizer provides comprehensive cost tracking, budget enforcement, and ROI measurement for AI agent operations.
Purpose: Control and optimize AI spending while maximizing value delivered
Pattern: Task-based (7 operations for cost management)
Key Innovation: Real-time cost tracking with automatic budget enforcement and cost-effective fallbacks
Industry Context (2025):
- Average AI spending: $85,521/month (36% YoY increase)
- Only 50% of organizations can measure AI ROI
- IT teams struggle with hidden costs
Solution: Comprehensive cost management from tracking to optimization
---
When to Use
Use agent-cost-optimizer when:
- Tracking AI costs across skills
- Preventing budget overruns
- Measuring ROI (cost vs. value delivered)
- Optimizing model selection (Opus vs. Sonnet vs. Haiku)
- Planning AI budgets
- Cost-effective development
- Enterprise cost accountability
---
Prerequisites
Required
- AI API access (Anthropic, OpenAI, Google)
- Cost tracking capability (API usage data)
Optional
- Paid.ai or AgentOps integration (advanced cost tracking)
- Prometheus/Grafana (cost visualization)
- Budget approval workflow
---
Cost Operations
Operation 1: Track Token Usage
Purpose: Monitor token consumption per skill invocation
Process:
- Initialize Tracking:
```json
{
"tracking_id": "track_20250126_1200",
"skill": "multi-ai-verification",
"started_at": "2025-01-26T12:00:00Z",
"tokens": {
"prompt": 0,
"completion": 0,
"total": 0
},
"cost": {
"amount_usd": 0.00,
"model": "claude-sonnet-4-5"
}
}
```
- Track During Execution:
```typescript
// After each AI call
trackTokens({
prompt_tokens: response.usage.input_tokens,
completion_tokens: response.usage.output_tokens,
model: 'claude-sonnet-4-5'
});
// Update running totals
```
- Finalize Tracking:
```json
{
"tracking_id": "track_20250126_1200",
"skill": "multi-ai-verification",
"completed_at": "2025-01-26T12:45:00Z",
"duration_minutes": 45,
"tokens": {
"prompt": 15234,
"completion": 8932,
"total": 24166
},
"cost": {
"amount_usd": 0.073,
"model": "claude-sonnet-4-5",
"rate": "$3 per million tokens"
}
}
```
- Save to Cost Log:
```bash
# Append to daily cost log
cat tracking.json >> .cost-tracking/$(date +%Y-%m-%d).json
```
Outputs:
- Token usage per invocation
- Cost per invocation
- Model used
- Daily/monthly aggregates
Validation:
- [ ] Tracking initialized
- [ ] Tokens counted accurately
- [ ] Cost calculated correctly
- [ ] Logs saved
Time Estimate: Automatic (integrated into skills)
---
Operation 2: Calculate Costs
Purpose: Compute accurate costs based on provider pricing
Pricing (2025 rates):
Anthropic (Claude):
| Model | Input (per MTok) | Output (per MTok) |
|-------|------------------|-------------------|
| Claude Opus 4.5 | $15 | $75 |
| Claude Sonnet 4.5 | $3 | $15 |
| Claude Haiku 4.5 | $0.80 | $4 |
OpenAI (Codex):
| Model | Input | Output |
|-------|-------|--------|
| GPT-5.1-codex | $5 | $15 |
| o3 | $10 | $40 |
| o4-mini | $1.50 | $6 |
Google (Gemini):
| Model | Input | Output |
|-------|-------|--------|
| Gemini 2.5 Pro | $1.25 | $5 |
| Gemini 2.5 Flash | $0.15 | $0.60 |
Process:
```typescript
function calculateCost(usage, model) {
const pricing = {
'claude-sonnet-4-5': { input: 3, output: 15 },
'claude-haiku-4-5': { input: 0.80, output: 4 },
'claude-opus-4-5': { input: 15, output: 75 },
// ... more models
};
const rates = pricing[model];
const inputCost = (usage.prompt_tokens / 1_000_000) * rates.input;
const outputCost = (usage.completion_tokens / 1_000_000) * rates.output;
return {
input_cost: inputCost,
output_cost: outputCost,
total_cost: inputCost + outputCost,
currency: 'USD'
};
}
```
Outputs:
- Accurate cost per invocation
- Model-specific pricing
- Input vs. output cost breakdown
---
Operation 3: Enforce Budget Caps
Purpose: Prevent exceeding monthly budget limits
Process:
- Set Budget:
```json
{
"monthly_budget_usd": 100,
"skill_budgets": {
"multi-ai-verification": 70,
"multi-ai-research": 20,
"multi-ai-testing": 10
},
"alert_thresholds": {
"warning": 0.80,
"critical": 0.95
}
}
```
- Check Before Operation:
```typescript
async function checkBudget(skill, estimated_cost) {
const usage = getCurrentMonthUsage();
const remaining = budget.monthly_budget_usd - usage.total_cost;
if (estimated_cost > remaining) {
return {
allowed: false,
reason: Budget exceeded: $${usage.total_cost}/$${budget.monthly_budget_usd},
overage: estimated_cost - remaining
};
}
if (usage.total_cost / budget.monthly_budget_usd > 0.80) {
return {
allowed: true,
warning: 80% of monthly budget used ($${usage.total_cost}/$${budget.monthly_budget_usd})
};
}
return { allowed: true };
}
```
- Enforce:
```typescript
const budgetCheck = await checkBudget('multi-ai-verification', 0.50);
if (!budgetCheck.allowed) {
console.log(β Budget exceeded: ${budgetCheck.reason});
console.log(Options:);
console.log( 1. Use cheaper model (Sonnet β Haiku));
console.log( 2. Skip optional verification layers);
console.log( 3. Request budget increase);
return;
}
if (budgetCheck.warning) {
console.log(β οΈ ${budgetCheck.warning});
}
// Proceed with operation
```
Outputs:
- Budget status checked
- Operations blocked if over budget
- Warnings at 80%
- Cost-effective alternatives suggested
---
Operation 4: Optimize Model Selection
Purpose: Choose cost-effective model for each task
Decision Matrix:
| Task Type | Recommended Model | Cost | Rationale |
|-----------|-------------------|------|-----------|
| Simple verification (Layer 1-2) | Haiku | $ | Rules-based, fast, cheap |
| Code generation | Sonnet | $$ | Balanced quality/cost |
| Complex reasoning (architecture) | Opus | $$$ | Best quality, worth premium |
| LLM-as-judge | Sonnet or external model | $$ | Good judgment, reasonable cost |
| Test generation | Sonnet | $$ | Comprehensive coverage needed |
| Research | Sonnet/Haiku mix | $-$$ | Haiku for search, Sonnet for synthesis |
Auto-Optimization:
```typescript
function selectModel(task_type, criticality, budget_remaining) {
// Critical + budget OK β Use Opus
if (criticality === 'critical' && budget_remaining > 20) {
return 'claude-opus-4-5';
}
// Standard β Use Sonnet
if (criticality === 'standard') {
return 'claude-sonnet-4-5';
}
// Budget low or simple task β Use Haiku
if (budget_remaining < 5 || task_type === 'simple') {
return 'claude-haiku-4-5';
}
return 'claude-sonnet-4-5'; // Default
}
```
Outputs:
- Optimal model selected
- Cost minimized
- Quality maintained
---
Operation 5: Cost-Effective Caching
Purpose: Avoid re-computing identical operations
Process:
- Cache Key Generation:
```typescript
function generateCacheKey(operation, inputs) {
// Hash inputs to create unique key
const content_hash = crypto
.createHash('sha256')
.update(JSON.stringify(inputs))
.digest('hex');
return ${operation}_${content_hash};
}
```
- Check Cache Before Operation:
```typescript
const cacheKey = generateCacheKey('verify_code', {
files: ['src/auth.ts'],
file_hashes: {'src/auth.ts': 'abc123'}
});
const cached = readCache(cacheKey);
if (cached && !isExpired(cached, 24)) {
// Use cached result
console.log('π¦ Using cached verification result');
return cached.result;
}
// Cache miss β run verification
const result = await runVerification();
// Save to cache
saveCache(cacheKey, result, ttl: 24 hours);
```
- Cache Structure:
```json
{
"cache_key": "verify_code_abc123def456",
"created_at": "2025-01-26T12:00:00Z",
"expires_at": "2025-01-27T12:00:00Z",
"inputs": {
"files": ["src/auth.ts"],
"file_hashes": {"src/auth.ts": "abc123"}
},
"result": {
"quality_score": 92,
"layers_passed": 5,
"issues": []
},
"cost_saved": 0.073
}
```
Outputs:
- 90% reduction in re-verification costs
- Instant results for unchanged code
- Cache hit/miss tracking
Validation:
- [ ] Cache key correctly identifies identical operations
- [ ] File changes invalidate cache
- [ ] Expired cache not used
- [ ] Cost savings tracked
---
Operation 6: Measure ROI
Purpose: Calculate return on investment for AI spending
Process:
- Track Time Saved:
```json
{
"task": "Implement user authentication",
"without_ai": {
"estimated_hours": 40,
"developer_rate": 100,
"total_cost": 4000
},
"with_ai": {
"actual_hours": 11.3,
"developer_rate": 100,
"developer_cost": 1130,
"ai_cost": 2.50,
"total_cost": 1132.50
},
"roi": {
"time_saved_hours": 28.7,
"cost_saved": 2867.50,
"roi_percentage": 253,
"payback_period_hours": 0.025
}
}
```
- Calculate ROI:
```typescript
function calculateROI(task) {
const time_saved = task.without_ai.estimated_hours - task.with_ai.actual_hours;
const cost_saved = task.without_ai.total_cost - task.with_ai.total_cost;
const roi_percentage = (cost_saved / task.with_ai.ai_cost) * 100;
return {
time_saved_hours: time_saved,
cost_saved_usd: cost_saved,
roi_percentage: roi_percentage,
payback_period: task.with_ai.ai_cost / (task.without_ai.developer_rate * (time_saved / 40)) // weeks
};
}
```
- Monthly ROI Report:
```markdown
# Monthly ROI Report - January 2025
## AI Spending
- Total AI costs: $87.50
- Breakdown:
- multi-ai-verification: $62.30 (71%)
- multi-ai-research: $18.40 (21%)
- multi-ai-testing: $6.80 (8%)
## Time Savings
- Tasks completed: 8
- Total hours saved: 156 hours
- Average savings per task: 19.5 hours
## Cost Savings
- Developer cost avoided: $15,600 (156h Γ $100/h)
- AI costs: $87.50
- Net savings: $15,512.50
## ROI
- ROI: 17,728% ($177 saved per $1 spent)
- Payback period: 0.03 weeks (immediate)
- Value multiplier: 178x
## Recommendations
- β Current spending highly cost-effective
- Continue using AI for all qualifying tasks
- Consider increasing budget (high ROI)
```
Outputs:
- Comprehensive ROI analysis
- Time and cost savings quantified
- Monthly reports
- Business justification for AI spending
---
Operation 7: Predict Costs
Purpose: Estimate costs before starting expensive operations
Process:
- Historical Data:
```json
{
"operation": "multi-ai-verification",
"mode": "all_5_layers",
"historical_costs": [
{"date": "2025-01-15", "tokens": 24166, "cost": 0.073},
{"date": "2025-01-18", "tokens": 21893, "cost": 0.066},
{"date": "2025-01-20", "tokens": 26543, "cost": 0.080}
],
"avg_cost": 0.073,
"std_dev": 0.007
}
```
- Predict Before Operation:
```typescript
const prediction = predictCost('multi-ai-verification', {
mode: 'all_5_layers',
code_size_lines: 850
});
console.log(π° Estimated cost: $${prediction.estimated_cost} Β± $${prediction.std_dev});
console.log( Range: $${prediction.min_cost} - $${prediction.max_cost});
console.log( Confidence: ${prediction.confidence}%);
// Check budget
if (prediction.estimated_cost > budget_remaining) {
console.log(β οΈ Estimated cost exceeds remaining budget);
console.log(Options:);
console.log( 1. Use Haiku (estimated: $${prediction.estimated_cost * 0.27}));
console.log( 2. Skip Layer 5 (save ~60%: $${prediction.estimated_cost * 0.4}));
console.log( 3. Increase budget);
}
```
Outputs:
- Cost predictions with confidence intervals
- Budget impact assessment
- Cost-effective alternatives suggested
---
Cost Optimization Strategies
Strategy 1: Model Selection
Baseline (All Sonnet): $100/month
Optimized (Smart selection):
- Layer 1-2: Haiku ($20)
- Layer 3-4: Sonnet ($40)
- Layer 5: Sonnet ($30)
- Total: $90/month (10% savings)
Aggressive (Maximum savings):
- Layer 1-2: Haiku ($20)
- Layer 3-4: Haiku ($15)
- Layer 5: Sonnet ($30)
- Total: $65/month (35% savings)
Trade-off: Some quality reduction at Layers 3-4
---
Strategy 2: Caching
Without Caching: Re-verify same code multiple times
With Caching (24-hour TTL):
- First verification: $0.073
- Same code next 24h: $0 (cache hit)
- Savings: 90% on unchanged code
Implementation:
```typescript
const cacheKey = hash(files_to_verify);
const cached = getCache(cacheKey);
if (cached && !isExpired(cached, 24)) {
return cached.result; // $0 cost
}
const result = await verify(); // $0.073 cost
saveCache(cacheKey, result);
```
---
Strategy 3: Ensemble Optimization
Baseline (Always 5-agent ensemble):
- 5 agents Γ $0.073 = $0.365 per verification
Optimized (Conditional ensemble):
- Critical features: 5 agents ($0.365)
- Standard features: 3 agents ($0.219)
- Simple changes: 1 agent ($0.073)
- Average savings: 60%
Decision Logic:
```typescript
function shouldUseEnsemble(criticality, code_size, budget) {
if (criticality === 'critical') return 5;
if (criticality === 'high' && budget > 20) return 3;
return 1; // Single agent
}
```
---
Strategy 4: Layer Skipping
Full Verification (All 5 layers): ~$0.073
Fast-Track (Layers 1-2 only):
- Rules + Functional only
- ~$0.015 (80% savings)
- Use for: minor changes, docs, config
Decision:
```typescript
if (lines_changed < 50 && files_changed.every(f => !isCritical(f))) {
// Fast-track: Layers 1-2 only
mode = 'fast_track';
estimated_cost = 0.015;
} else {
// Full verification
mode = 'standard';
estimated_cost = 0.073;
}
```
---
Budget Management
Monthly Budget Planning
Sample Budget ($100/month):
```json
{
"monthly_budget_usd": 100,
"allocation": {
"multi-ai-verification": {
"budget": 70,
"rationale": "Most expensive (LLM-as-judge)"
},
"multi-ai-research": {
"budget": 20,
"rationale": "Occasional use, tri-AI"
},
"multi-ai-testing": {
"budget": 10,
"rationale": "Mostly automated"
},
"buffer": 10
},
"assumptions": {
"features_per_month": 8,
"verifications_per_feature": 1.5,
"research_per_month": 2
}
}
```
Budget Tracking
Daily:
```bash
# Check today's spending
cat .cost-tracking/$(date +%Y-%m-%d).json | jq '[.[] | .cost.amount_usd] | add'
# Output: $3.45 today
```
Monthly:
```bash
# Check month-to-date
cat .cost-tracking/2025-01-*.json | jq '[.[] | .cost.amount_usd] | add'
# Output: $67.80 this month (68% of budget)
```
Projection:
```typescript
// Project end-of-month
const days_elapsed = 26;
const days_in_month = 31;
const current_spend = 67.80;
const projected = (current_spend / days_elapsed) * days_in_month;
// = $81.14 projected (within budget β )
```
---
Cost Alerting
Alert Levels
80% Budget (Warning):
```markdown
β οΈ BUDGET ALERT: 80% Used
Current: $80.00 / $100.00 (80%)
Remaining: $20.00
Days left: 5
Projected EOMs: $93.75 (within budget)
Recommendations:
- Monitor spending closely
- Use Haiku for simple tasks
- Cache aggressively
- Skip optional layers where safe
```
95% Budget (Critical):
```markdown
π¨ CRITICAL: 95% Budget Used
Current: $95.00 / $100.00 (95%)
Remaining: $5.00
Days left: 5
Projected EOM: $110 (OVER BUDGET)
Actions Required:
- Pause non-critical verifications
- Use Haiku exclusively
- Request budget increase OR
- Defer work to next month
Auto-throttling: Enabled
- Only critical operations allowed
- All optional layers disabled
- Ensemble verification disabled
```
Budget Exceeded:
```markdown
β BUDGET EXCEEDED
Current: $102.50 / $100.00 (102.5%)
Overage: $2.50
Operations BLOCKED until:
- Budget increased OR
- Next month (resets automatically)
Emergency Override: Requires approval
```
---
ROI Calculation Framework
Value Metrics
Quantifiable Value:
- Time saved (hours)
- Cost saved (developer time avoided)
- Quality improvement (fewer bugs in production)
- Faster time-to-market (days)
Formula:
```
ROI = ((Value Delivered - AI Costs) / AI Costs) Γ 100%
```
Example:
```
Feature without AI: 40 hours Γ $100/hour = $4,000
Feature with AI: 11.3 hours Γ $100/hour + $2.50 AI = $1,132.50
Value Delivered = $4,000 - $1,130 = $2,870
AI Costs = $2.50
ROI = ($2,870 / $2.50) Γ 100% = 114,800%
```
Monthly Reporting
Template:
```markdown
# AI ROI Report - January 2025
Summary
- AI Spending: $87.50
- Value Delivered: $15,600 (156 hours saved Γ $100/hour)
- ROI: 17,728%
- Payback: Immediate
Details
Features Delivered (8)
- User authentication - 11.3h (was 40h), ROI: 114,800%
- Payment integration - 8.5h (was 32h), ROI: 108,235%
[... more ...]
Cost Breakdown
- Verification: $62.30 (71%) - Highest cost, highest value
- Research: $18.40 (21%) - Occasional, high impact
- Testing: $6.80 (8%) - Mostly automated, low cost
Savings
- Time: 156 hours saved
- Cost: $15,512.50 net savings
- Quality: 4 bugs prevented (saved ~20 hours)
Recommendations
- β ROI is excellent (17,728%)
- Consider increasing budget (high returns)
- Current spending optimal
```
---
Quick Reference
Cost Operations
| Operation | Purpose | Time | Automation |
|-----------|---------|------|------------|
| Track | Monitor token usage | Automatic | 100% |
| Calculate | Compute costs | Automatic | 100% |
| Enforce | Budget caps | Automatic | 100% |
| Optimize | Model selection | Semi-auto | 70% |
| Cache | Avoid re-compute | Automatic | 100% |
| Measure ROI | Value analysis | Manual | 30% |
| Predict | Cost estimation | Automatic | 90% |
Cost Optimization Strategies
| Strategy | Savings | Trade-off | Recommended For |
|----------|---------|-----------|-----------------|
| Model selection | 10-35% | Some quality loss | All features |
| Caching | 90% | Stale results risk | Unchanged code |
| Ensemble optimization | 60% | Lower confidence | Non-critical |
| Layer skipping | 80% | Less thorough | Minor changes |
Budget Thresholds
- < 80%: Normal operation
- 80-95%: Warning, optimize
- 95-100%: Critical, throttle
- > 100%: Block operations
---
agent-cost-optimizer ensures cost-effective AI operations through real-time tracking, budget enforcement, model optimization, and ROI measurement - preventing budget overruns while maximizing value delivered.
For cost reports, see examples/. For optimization strategies, see Cost Optimization Strategies section.
More from this repository10
xai-stock-sentiment skill from adaptationio/skrillz
Generates Ralph-compatible prompts for single implementation tasks with clear completion criteria and automatic verification.
Orchestrates continuous autonomous coding sessions, managing feature implementation, testing, and progress tracking with intelligent checkpointing and recovery mechanisms.
auto-claude-troubleshooting skill from adaptationio/skrillz
auto-claude-setup skill from adaptationio/skrillz
Analyzes Claude Code observability data to generate insights on performance, costs, errors, tool usage, sessions, conversations, and subagents through advanced metrics and log querying.
xai-financial-integration skill from adaptationio/skrillz
xai-agent-tools skill from adaptationio/skrillz
xai-crypto-sentiment skill from adaptationio/skrillz
auto-claude-memory skill from adaptationio/skrillz