🎯

agent-cost-optimizer

🎯Skill

from adaptationio/skrillz

VibeIndex|
What it does

agent-cost-optimizer skill from adaptationio/skrillz

πŸ“¦

Part of

adaptationio/skrillz(191 items)

agent-cost-optimizer

Installation

Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add adaptationio/Skrillz
Install PluginInstall plugin from marketplace
/plugin install skrillz@adaptationio-Skrillz
Claude CodeAdd plugin in Claude Code
/plugin enable skrillz@adaptationio-Skrillz
Add MarketplaceAdd marketplace to Claude Code
/plugin marketplace add /path/to/skrillz
Install PluginInstall plugin from marketplace
/plugin install skrillz@local

+ 4 more commands

πŸ“– Extracted from docs: adaptationio/skrillz
1Installs
3
-
Last UpdatedJan 16, 2026

Skill Details

SKILL.md

Real-time cost tracking, budget enforcement, and ROI measurement for AI agent operations. Track token usage, predict costs, enforce budget caps ($50-70/month typical), optimize model selection, cache results, measure cost-to-value. Use when tracking AI costs, preventing budget overruns, optimizing spend, measuring ROI, or ensuring cost-effective AI operations.

Overview

# Agent Cost Optimizer

Overview

agent-cost-optimizer provides comprehensive cost tracking, budget enforcement, and ROI measurement for AI agent operations.

Purpose: Control and optimize AI spending while maximizing value delivered

Pattern: Task-based (7 operations for cost management)

Key Innovation: Real-time cost tracking with automatic budget enforcement and cost-effective fallbacks

Industry Context (2025):

  • Average AI spending: $85,521/month (36% YoY increase)
  • Only 50% of organizations can measure AI ROI
  • IT teams struggle with hidden costs

Solution: Comprehensive cost management from tracking to optimization

---

When to Use

Use agent-cost-optimizer when:

  • Tracking AI costs across skills
  • Preventing budget overruns
  • Measuring ROI (cost vs. value delivered)
  • Optimizing model selection (Opus vs. Sonnet vs. Haiku)
  • Planning AI budgets
  • Cost-effective development
  • Enterprise cost accountability

---

Prerequisites

Required

  • AI API access (Anthropic, OpenAI, Google)
  • Cost tracking capability (API usage data)

Optional

  • Paid.ai or AgentOps integration (advanced cost tracking)
  • Prometheus/Grafana (cost visualization)
  • Budget approval workflow

---

Cost Operations

Operation 1: Track Token Usage

Purpose: Monitor token consumption per skill invocation

Process:

  1. Initialize Tracking:

```json

{

"tracking_id": "track_20250126_1200",

"skill": "multi-ai-verification",

"started_at": "2025-01-26T12:00:00Z",

"tokens": {

"prompt": 0,

"completion": 0,

"total": 0

},

"cost": {

"amount_usd": 0.00,

"model": "claude-sonnet-4-5"

}

}

```

  1. Track During Execution:

```typescript

// After each AI call

trackTokens({

prompt_tokens: response.usage.input_tokens,

completion_tokens: response.usage.output_tokens,

model: 'claude-sonnet-4-5'

});

// Update running totals

```

  1. Finalize Tracking:

```json

{

"tracking_id": "track_20250126_1200",

"skill": "multi-ai-verification",

"completed_at": "2025-01-26T12:45:00Z",

"duration_minutes": 45,

"tokens": {

"prompt": 15234,

"completion": 8932,

"total": 24166

},

"cost": {

"amount_usd": 0.073,

"model": "claude-sonnet-4-5",

"rate": "$3 per million tokens"

}

}

```

  1. Save to Cost Log:

```bash

# Append to daily cost log

cat tracking.json >> .cost-tracking/$(date +%Y-%m-%d).json

```

Outputs:

  • Token usage per invocation
  • Cost per invocation
  • Model used
  • Daily/monthly aggregates

Validation:

  • [ ] Tracking initialized
  • [ ] Tokens counted accurately
  • [ ] Cost calculated correctly
  • [ ] Logs saved

Time Estimate: Automatic (integrated into skills)

---

Operation 2: Calculate Costs

Purpose: Compute accurate costs based on provider pricing

Pricing (2025 rates):

Anthropic (Claude):

| Model | Input (per MTok) | Output (per MTok) |

|-------|------------------|-------------------|

| Claude Opus 4.5 | $15 | $75 |

| Claude Sonnet 4.5 | $3 | $15 |

| Claude Haiku 4.5 | $0.80 | $4 |

OpenAI (Codex):

| Model | Input | Output |

|-------|-------|--------|

| GPT-5.1-codex | $5 | $15 |

| o3 | $10 | $40 |

| o4-mini | $1.50 | $6 |

Google (Gemini):

| Model | Input | Output |

|-------|-------|--------|

| Gemini 2.5 Pro | $1.25 | $5 |

| Gemini 2.5 Flash | $0.15 | $0.60 |

Process:

```typescript

function calculateCost(usage, model) {

const pricing = {

'claude-sonnet-4-5': { input: 3, output: 15 },

'claude-haiku-4-5': { input: 0.80, output: 4 },

'claude-opus-4-5': { input: 15, output: 75 },

// ... more models

};

const rates = pricing[model];

const inputCost = (usage.prompt_tokens / 1_000_000) * rates.input;

const outputCost = (usage.completion_tokens / 1_000_000) * rates.output;

return {

input_cost: inputCost,

output_cost: outputCost,

total_cost: inputCost + outputCost,

currency: 'USD'

};

}

```

Outputs:

  • Accurate cost per invocation
  • Model-specific pricing
  • Input vs. output cost breakdown

---

Operation 3: Enforce Budget Caps

Purpose: Prevent exceeding monthly budget limits

Process:

  1. Set Budget:

```json

{

"monthly_budget_usd": 100,

"skill_budgets": {

"multi-ai-verification": 70,

"multi-ai-research": 20,

"multi-ai-testing": 10

},

"alert_thresholds": {

"warning": 0.80,

"critical": 0.95

}

}

```

  1. Check Before Operation:

```typescript

async function checkBudget(skill, estimated_cost) {

const usage = getCurrentMonthUsage();

const remaining = budget.monthly_budget_usd - usage.total_cost;

if (estimated_cost > remaining) {

return {

allowed: false,

reason: Budget exceeded: $${usage.total_cost}/$${budget.monthly_budget_usd},

overage: estimated_cost - remaining

};

}

if (usage.total_cost / budget.monthly_budget_usd > 0.80) {

return {

allowed: true,

warning: 80% of monthly budget used ($${usage.total_cost}/$${budget.monthly_budget_usd})

};

}

return { allowed: true };

}

```

  1. Enforce:

```typescript

const budgetCheck = await checkBudget('multi-ai-verification', 0.50);

if (!budgetCheck.allowed) {

console.log(❌ Budget exceeded: ${budgetCheck.reason});

console.log(Options:);

console.log( 1. Use cheaper model (Sonnet β†’ Haiku));

console.log( 2. Skip optional verification layers);

console.log( 3. Request budget increase);

return;

}

if (budgetCheck.warning) {

console.log(⚠️ ${budgetCheck.warning});

}

// Proceed with operation

```

Outputs:

  • Budget status checked
  • Operations blocked if over budget
  • Warnings at 80%
  • Cost-effective alternatives suggested

---

Operation 4: Optimize Model Selection

Purpose: Choose cost-effective model for each task

Decision Matrix:

| Task Type | Recommended Model | Cost | Rationale |

|-----------|-------------------|------|-----------|

| Simple verification (Layer 1-2) | Haiku | $ | Rules-based, fast, cheap |

| Code generation | Sonnet | $$ | Balanced quality/cost |

| Complex reasoning (architecture) | Opus | $$$ | Best quality, worth premium |

| LLM-as-judge | Sonnet or external model | $$ | Good judgment, reasonable cost |

| Test generation | Sonnet | $$ | Comprehensive coverage needed |

| Research | Sonnet/Haiku mix | $-$$ | Haiku for search, Sonnet for synthesis |

Auto-Optimization:

```typescript

function selectModel(task_type, criticality, budget_remaining) {

// Critical + budget OK β†’ Use Opus

if (criticality === 'critical' && budget_remaining > 20) {

return 'claude-opus-4-5';

}

// Standard β†’ Use Sonnet

if (criticality === 'standard') {

return 'claude-sonnet-4-5';

}

// Budget low or simple task β†’ Use Haiku

if (budget_remaining < 5 || task_type === 'simple') {

return 'claude-haiku-4-5';

}

return 'claude-sonnet-4-5'; // Default

}

```

Outputs:

  • Optimal model selected
  • Cost minimized
  • Quality maintained

---

Operation 5: Cost-Effective Caching

Purpose: Avoid re-computing identical operations

Process:

  1. Cache Key Generation:

```typescript

function generateCacheKey(operation, inputs) {

// Hash inputs to create unique key

const content_hash = crypto

.createHash('sha256')

.update(JSON.stringify(inputs))

.digest('hex');

return ${operation}_${content_hash};

}

```

  1. Check Cache Before Operation:

```typescript

const cacheKey = generateCacheKey('verify_code', {

files: ['src/auth.ts'],

file_hashes: {'src/auth.ts': 'abc123'}

});

const cached = readCache(cacheKey);

if (cached && !isExpired(cached, 24)) {

// Use cached result

console.log('πŸ“¦ Using cached verification result');

return cached.result;

}

// Cache miss β†’ run verification

const result = await runVerification();

// Save to cache

saveCache(cacheKey, result, ttl: 24 hours);

```

  1. Cache Structure:

```json

{

"cache_key": "verify_code_abc123def456",

"created_at": "2025-01-26T12:00:00Z",

"expires_at": "2025-01-27T12:00:00Z",

"inputs": {

"files": ["src/auth.ts"],

"file_hashes": {"src/auth.ts": "abc123"}

},

"result": {

"quality_score": 92,

"layers_passed": 5,

"issues": []

},

"cost_saved": 0.073

}

```

Outputs:

  • 90% reduction in re-verification costs
  • Instant results for unchanged code
  • Cache hit/miss tracking

Validation:

  • [ ] Cache key correctly identifies identical operations
  • [ ] File changes invalidate cache
  • [ ] Expired cache not used
  • [ ] Cost savings tracked

---

Operation 6: Measure ROI

Purpose: Calculate return on investment for AI spending

Process:

  1. Track Time Saved:

```json

{

"task": "Implement user authentication",

"without_ai": {

"estimated_hours": 40,

"developer_rate": 100,

"total_cost": 4000

},

"with_ai": {

"actual_hours": 11.3,

"developer_rate": 100,

"developer_cost": 1130,

"ai_cost": 2.50,

"total_cost": 1132.50

},

"roi": {

"time_saved_hours": 28.7,

"cost_saved": 2867.50,

"roi_percentage": 253,

"payback_period_hours": 0.025

}

}

```

  1. Calculate ROI:

```typescript

function calculateROI(task) {

const time_saved = task.without_ai.estimated_hours - task.with_ai.actual_hours;

const cost_saved = task.without_ai.total_cost - task.with_ai.total_cost;

const roi_percentage = (cost_saved / task.with_ai.ai_cost) * 100;

return {

time_saved_hours: time_saved,

cost_saved_usd: cost_saved,

roi_percentage: roi_percentage,

payback_period: task.with_ai.ai_cost / (task.without_ai.developer_rate * (time_saved / 40)) // weeks

};

}

```

  1. Monthly ROI Report:

```markdown

# Monthly ROI Report - January 2025

## AI Spending

- Total AI costs: $87.50

- Breakdown:

- multi-ai-verification: $62.30 (71%)

- multi-ai-research: $18.40 (21%)

- multi-ai-testing: $6.80 (8%)

## Time Savings

- Tasks completed: 8

- Total hours saved: 156 hours

- Average savings per task: 19.5 hours

## Cost Savings

- Developer cost avoided: $15,600 (156h Γ— $100/h)

- AI costs: $87.50

- Net savings: $15,512.50

## ROI

- ROI: 17,728% ($177 saved per $1 spent)

- Payback period: 0.03 weeks (immediate)

- Value multiplier: 178x

## Recommendations

- βœ… Current spending highly cost-effective

- Continue using AI for all qualifying tasks

- Consider increasing budget (high ROI)

```

Outputs:

  • Comprehensive ROI analysis
  • Time and cost savings quantified
  • Monthly reports
  • Business justification for AI spending

---

Operation 7: Predict Costs

Purpose: Estimate costs before starting expensive operations

Process:

  1. Historical Data:

```json

{

"operation": "multi-ai-verification",

"mode": "all_5_layers",

"historical_costs": [

{"date": "2025-01-15", "tokens": 24166, "cost": 0.073},

{"date": "2025-01-18", "tokens": 21893, "cost": 0.066},

{"date": "2025-01-20", "tokens": 26543, "cost": 0.080}

],

"avg_cost": 0.073,

"std_dev": 0.007

}

```

  1. Predict Before Operation:

```typescript

const prediction = predictCost('multi-ai-verification', {

mode: 'all_5_layers',

code_size_lines: 850

});

console.log(πŸ’° Estimated cost: $${prediction.estimated_cost} Β± $${prediction.std_dev});

console.log( Range: $${prediction.min_cost} - $${prediction.max_cost});

console.log( Confidence: ${prediction.confidence}%);

// Check budget

if (prediction.estimated_cost > budget_remaining) {

console.log(⚠️ Estimated cost exceeds remaining budget);

console.log(Options:);

console.log( 1. Use Haiku (estimated: $${prediction.estimated_cost * 0.27}));

console.log( 2. Skip Layer 5 (save ~60%: $${prediction.estimated_cost * 0.4}));

console.log( 3. Increase budget);

}

```

Outputs:

  • Cost predictions with confidence intervals
  • Budget impact assessment
  • Cost-effective alternatives suggested

---

Cost Optimization Strategies

Strategy 1: Model Selection

Baseline (All Sonnet): $100/month

Optimized (Smart selection):

  • Layer 1-2: Haiku ($20)
  • Layer 3-4: Sonnet ($40)
  • Layer 5: Sonnet ($30)
  • Total: $90/month (10% savings)

Aggressive (Maximum savings):

  • Layer 1-2: Haiku ($20)
  • Layer 3-4: Haiku ($15)
  • Layer 5: Sonnet ($30)
  • Total: $65/month (35% savings)

Trade-off: Some quality reduction at Layers 3-4

---

Strategy 2: Caching

Without Caching: Re-verify same code multiple times

With Caching (24-hour TTL):

  • First verification: $0.073
  • Same code next 24h: $0 (cache hit)
  • Savings: 90% on unchanged code

Implementation:

```typescript

const cacheKey = hash(files_to_verify);

const cached = getCache(cacheKey);

if (cached && !isExpired(cached, 24)) {

return cached.result; // $0 cost

}

const result = await verify(); // $0.073 cost

saveCache(cacheKey, result);

```

---

Strategy 3: Ensemble Optimization

Baseline (Always 5-agent ensemble):

  • 5 agents Γ— $0.073 = $0.365 per verification

Optimized (Conditional ensemble):

  • Critical features: 5 agents ($0.365)
  • Standard features: 3 agents ($0.219)
  • Simple changes: 1 agent ($0.073)
  • Average savings: 60%

Decision Logic:

```typescript

function shouldUseEnsemble(criticality, code_size, budget) {

if (criticality === 'critical') return 5;

if (criticality === 'high' && budget > 20) return 3;

return 1; // Single agent

}

```

---

Strategy 4: Layer Skipping

Full Verification (All 5 layers): ~$0.073

Fast-Track (Layers 1-2 only):

  • Rules + Functional only
  • ~$0.015 (80% savings)
  • Use for: minor changes, docs, config

Decision:

```typescript

if (lines_changed < 50 && files_changed.every(f => !isCritical(f))) {

// Fast-track: Layers 1-2 only

mode = 'fast_track';

estimated_cost = 0.015;

} else {

// Full verification

mode = 'standard';

estimated_cost = 0.073;

}

```

---

Budget Management

Monthly Budget Planning

Sample Budget ($100/month):

```json

{

"monthly_budget_usd": 100,

"allocation": {

"multi-ai-verification": {

"budget": 70,

"rationale": "Most expensive (LLM-as-judge)"

},

"multi-ai-research": {

"budget": 20,

"rationale": "Occasional use, tri-AI"

},

"multi-ai-testing": {

"budget": 10,

"rationale": "Mostly automated"

},

"buffer": 10

},

"assumptions": {

"features_per_month": 8,

"verifications_per_feature": 1.5,

"research_per_month": 2

}

}

```

Budget Tracking

Daily:

```bash

# Check today's spending

cat .cost-tracking/$(date +%Y-%m-%d).json | jq '[.[] | .cost.amount_usd] | add'

# Output: $3.45 today

```

Monthly:

```bash

# Check month-to-date

cat .cost-tracking/2025-01-*.json | jq '[.[] | .cost.amount_usd] | add'

# Output: $67.80 this month (68% of budget)

```

Projection:

```typescript

// Project end-of-month

const days_elapsed = 26;

const days_in_month = 31;

const current_spend = 67.80;

const projected = (current_spend / days_elapsed) * days_in_month;

// = $81.14 projected (within budget βœ…)

```

---

Cost Alerting

Alert Levels

80% Budget (Warning):

```markdown

⚠️ BUDGET ALERT: 80% Used

Current: $80.00 / $100.00 (80%)

Remaining: $20.00

Days left: 5

Projected EOMs: $93.75 (within budget)

Recommendations:

  • Monitor spending closely
  • Use Haiku for simple tasks
  • Cache aggressively
  • Skip optional layers where safe

```

95% Budget (Critical):

```markdown

🚨 CRITICAL: 95% Budget Used

Current: $95.00 / $100.00 (95%)

Remaining: $5.00

Days left: 5

Projected EOM: $110 (OVER BUDGET)

Actions Required:

  1. Pause non-critical verifications
  2. Use Haiku exclusively
  3. Request budget increase OR
  4. Defer work to next month

Auto-throttling: Enabled

  • Only critical operations allowed
  • All optional layers disabled
  • Ensemble verification disabled

```

Budget Exceeded:

```markdown

❌ BUDGET EXCEEDED

Current: $102.50 / $100.00 (102.5%)

Overage: $2.50

Operations BLOCKED until:

  1. Budget increased OR
  2. Next month (resets automatically)

Emergency Override: Requires approval

```

---

ROI Calculation Framework

Value Metrics

Quantifiable Value:

  • Time saved (hours)
  • Cost saved (developer time avoided)
  • Quality improvement (fewer bugs in production)
  • Faster time-to-market (days)

Formula:

```

ROI = ((Value Delivered - AI Costs) / AI Costs) Γ— 100%

```

Example:

```

Feature without AI: 40 hours Γ— $100/hour = $4,000

Feature with AI: 11.3 hours Γ— $100/hour + $2.50 AI = $1,132.50

Value Delivered = $4,000 - $1,130 = $2,870

AI Costs = $2.50

ROI = ($2,870 / $2.50) Γ— 100% = 114,800%

```

Monthly Reporting

Template:

```markdown

# AI ROI Report - January 2025

Summary

  • AI Spending: $87.50
  • Value Delivered: $15,600 (156 hours saved Γ— $100/hour)
  • ROI: 17,728%
  • Payback: Immediate

Details

Features Delivered (8)

  1. User authentication - 11.3h (was 40h), ROI: 114,800%
  2. Payment integration - 8.5h (was 32h), ROI: 108,235%

[... more ...]

Cost Breakdown

  • Verification: $62.30 (71%) - Highest cost, highest value
  • Research: $18.40 (21%) - Occasional, high impact
  • Testing: $6.80 (8%) - Mostly automated, low cost

Savings

  • Time: 156 hours saved
  • Cost: $15,512.50 net savings
  • Quality: 4 bugs prevented (saved ~20 hours)

Recommendations

  • βœ… ROI is excellent (17,728%)
  • Consider increasing budget (high returns)
  • Current spending optimal

```

---

Quick Reference

Cost Operations

| Operation | Purpose | Time | Automation |

|-----------|---------|------|------------|

| Track | Monitor token usage | Automatic | 100% |

| Calculate | Compute costs | Automatic | 100% |

| Enforce | Budget caps | Automatic | 100% |

| Optimize | Model selection | Semi-auto | 70% |

| Cache | Avoid re-compute | Automatic | 100% |

| Measure ROI | Value analysis | Manual | 30% |

| Predict | Cost estimation | Automatic | 90% |

Cost Optimization Strategies

| Strategy | Savings | Trade-off | Recommended For |

|----------|---------|-----------|-----------------|

| Model selection | 10-35% | Some quality loss | All features |

| Caching | 90% | Stale results risk | Unchanged code |

| Ensemble optimization | 60% | Lower confidence | Non-critical |

| Layer skipping | 80% | Less thorough | Minor changes |

Budget Thresholds

  • < 80%: Normal operation
  • 80-95%: Warning, optimize
  • 95-100%: Critical, throttle
  • > 100%: Block operations

---

agent-cost-optimizer ensures cost-effective AI operations through real-time tracking, budget enforcement, model optimization, and ROI measurement - preventing budget overruns while maximizing value delivered.

For cost reports, see examples/. For optimization strategies, see Cost Optimization Strategies section.